STAT 824 hw 04

Orthogonal series estimator, backfitting, sparse backfitting, bootstrap

1. Suppose $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ is a basis for all functions $f:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1}|f(x)|^{2} d x<\infty$ which satisfies

$$
\int_{0}^{1} \varphi_{j}(x) \varphi_{j^{\prime}}(x) d x= \begin{cases}1, & j=j^{\prime} \tag{1}\\ 0, & j \neq j^{\prime}\end{cases}
$$

A basis with the above property is called an orthonormal basis. Assume we can represent f as

$$
f(x)=\sum_{i=1}^{\infty} \theta_{j} \varphi_{j}(x), \quad \text { where } \quad \theta_{j}=\int_{0}^{1} f(x) \varphi_{j}(x) d x, \quad j=1,2, \ldots
$$

We will consider estimating the approximation $f_{n}^{N}(x)=\sum_{i=1}^{N} \theta_{j} \varphi_{j}(x)$ for some finite N in the context of nonparametric regression.
(a) Consider the trigonometric basis, which is given by $\varphi_{1}(x)=1, \varphi_{2 k}(x)=\sqrt{2} \cos (2 \pi k x)$, and $\varphi_{2 k+1}(x)=\sqrt{2} \sin (2 \pi k x)$ for $k=1,2, \ldots$ for $x \in[0,1]$. Show that this basis is orthonormal, i.e. that it satisfies 1 .
(b) Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be data pairs such that $Y_{i}=f\left(X_{i}\right)+\varepsilon_{i}$, where $X_{i}=i / n, i=1, \ldots, n$ and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent with mean zero and variance $\sigma^{2}<\infty$. Consider the estimator \hat{f}_{n}^{N} of f given by

$$
\begin{equation*}
\hat{f}_{n}^{N}(x)=\sum_{j=1}^{N} \hat{\theta}_{j} \varphi_{j}(x), \quad \text { where } \quad \hat{\theta}_{j}=n^{-1} \sum_{i=1}^{n} Y_{i} \varphi_{j}\left(X_{i}\right), \quad j=1, \ldots, N . \tag{2}
\end{equation*}
$$

This type of estimator is called an orthogonal series estimator. See [2] for more details.
i. For $x \in[0,1]$, find weights $W_{n 1}(x), \ldots, W_{n n}(x)$ such that $\hat{f}_{n}^{N}(x)=\sum_{i=1}^{n} W_{n i}(x) Y_{i}$.
ii. Give the entries of the matrix \mathbf{S} such that $\hat{\mathbf{f}}_{n}^{N}=\mathbf{S Y}$, where $\hat{\mathbf{f}}_{n}^{N}=\left(\hat{f}_{n}^{N}\left(X_{1}\right), \ldots, \hat{f}_{n}^{N}\left(X_{n}\right)\right)^{T}$ and $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$.
iii. Give the matrix \mathbf{B} such that $\mathbf{S}=(1 / n) \mathbf{B B}^{T}$.
iv. Generate data with the R code

```
m <- function(x){ - 25* 4* (2*x - 1) * dnorm(4*(2*x - 1))}
n <- 200
X <- c(1:n)/n
Y <- m(X) + rnorm(n,0,1)
```

Then make a scatterplot of the data with a curve overlaid which traces the fitted values $\hat{f}_{n}^{N}\left(X_{1}\right), \ldots, \hat{f}_{n}^{N}\left(X_{n}\right)$ of the estimator in (2) based on the trigonometric basis with functions for $k=1, \ldots, 20$, such that $N=41$. My plot looks like this:

v. What do you notice about the quantities $n^{-1} \sum_{i=1}^{n} \varphi_{j}(i / n) \varphi_{j^{\prime}}(i / n), 1 \leq j, j^{\prime} \leq N$, in relation to the property in (1)? Hint: These are the entries of the matrix $(1 / n) \mathbf{B}^{T} \mathbf{B}$, which you can compute in R.
vi. Now consider using the trigonometric basis with functions for $k=1, \ldots, K$, giving $N=2 K+1$ total basis functions: Choose K via leave-one-out crossvalidation (note that you can use the special trick for linear estimators to save computation time). Report the chosen value of K and the corresponding number of basis functions N. Also make a scatterplot of the data with the curve tracing the fitted values overlaid.
2. Import into R the data in this . Rdata file and fit the additive model

$$
Y=\mu+m_{1}\left(X_{1}\right)+\cdots+m_{8}\left(X_{8}\right)+\varepsilon
$$

with a soft-thresholded (sparse) Nadaraya-Watson backfitting estimator, enforcing the usual identifiability condition on the additive components.
(a) Give $\hat{\mu}$.
(b) Make a plot like the one pictured below (choose a bandwidth h and a soft-thresholding parameter just by eyeballing the plot), where in panel j, the points $\left(Y_{i}-\sum_{k \neq j} \hat{m}_{k}\left(X_{i k}\right), X_{k j}\right), i=1, \ldots, n$, are plotted along with a line tracing the fitted values $\hat{m}_{j}\left(X_{i j}\right), i=1, \ldots, n$.

(c) Now fit Nadaraya-Watson backfitting estimator without soft-thresholding; make a similar plot.
3. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be iid realizations of (X, Y). Let $\rho=\operatorname{corr}(X, Y)$ and $\hat{\rho}$ be the sample correlation. If (X, Y) are bivariate Normal then $\sqrt{n}(\zeta(\hat{\rho})-\zeta(\rho)) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0,1)$ as $n \rightarrow \infty$ where

$$
\zeta(\rho)=\frac{1}{2} \log \left(\frac{1+\rho}{1-\rho}\right) .
$$

(a) Let $Y \mid X \sim \operatorname{Normal}\left(\rho X, 1-\rho^{2}\right), X \sim \operatorname{Normal}(0,1)$ so that (X, Y) are bivariate standard Normal with correlation ρ. For $\alpha=0.05, n=50, \rho=1 / 2$, and $B=500$, run a simulation with 500 simulated data sets to compare the coverage of ρ and the average width of the three intervals

$$
\begin{aligned}
\mathcal{A}_{n} & =\left[\zeta^{-1}\left(\zeta(\hat{\rho})-n^{-1 / 2} z_{\alpha / 2}\right), \zeta^{-1}\left(\zeta(\hat{\rho})+n^{-1 / 2} z_{\alpha / 2}\right)\right] \\
\mathcal{B}_{n}^{\text {pctl }} & =\left[\hat{\rho}_{n}^{*((\alpha / 2) B)}, \hat{\rho}_{n}^{*((1-\alpha / 2) B)}\right] \\
\mathcal{B}_{n}^{\text {piv }} & =\left[\zeta^{-1}\left(2 \hat{\zeta}_{n}-\hat{\zeta}_{n}^{*((1-\alpha / 2) B)}\right), \zeta^{-1}\left(2 \hat{\zeta}_{n}-\hat{\zeta}_{n}^{*((\alpha / 2) B)}\right)\right],
\end{aligned}
$$

where $\zeta^{-1}(z)=\frac{e^{2 z}-1}{e^{2 z}+1}, \hat{\rho}_{n}^{*(1)} \leq \cdots \leq \hat{\rho}_{n}^{*(B)}$ are sorted bootstrap realizations of $\hat{\rho}$ from samples drawn with replacement from $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, and $\hat{\zeta}_{n}^{*(b)}=\zeta\left(\hat{\rho}_{n}^{*(b)}\right)$ for $b=1, \ldots, B$ with $\hat{\zeta}_{n}=\zeta\left(\hat{\rho}_{n}\right)$.
(b) Now let $Y \mid X \sim \operatorname{Normal}\left(X, \sigma^{2}\right), X \sim \operatorname{Exponential}(\lambda)$ with $\lambda=1$ and $\sigma^{2}=3$. Find $\rho=\operatorname{corr}(X, Y)$ and compare the coverage of ρ and the width of the intervals for $\alpha=0.05, n=50$, and $B=500$ as before.
(c) Why does the asymptotic interval \mathcal{A}_{n} perform poorly under the settings in part (b)?
(d) Which interval performed best in parts (a) and (b)?
4. (Optional) Let $\mathbf{X} \in \mathbb{R}^{n \times p}, p<n$, be a full-rank matrix and let $\mathbf{Y} \in \mathbb{R}^{n}$ and partition the columns of \mathbf{X} such that $\mathbf{X}=\left[\mathbf{X}_{1}, \mathbf{X}_{-1}\right]$. Let $\hat{\boldsymbol{\beta}} \in \mathbb{R}^{p}$ be the vector such that $\left(\mathbf{X}^{T} \mathbf{X}\right) \hat{\boldsymbol{\beta}}=\mathbf{X}^{T} \mathbf{Y}$ and let $\hat{\boldsymbol{\beta}}$ be partitioned in the same way as \mathbf{X} into

$$
\hat{\boldsymbol{\beta}}=\left[\begin{array}{l}
\hat{\boldsymbol{\beta}}_{1} \\
\hat{\boldsymbol{\beta}}_{-1}
\end{array}\right] .
$$

Define $\mathbf{P}_{1}=\mathbf{X}_{1}\left(\mathbf{X}_{1}^{T} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{T}$ and $\mathbf{P}_{-1}=\mathbf{X}_{-1}\left(\mathbf{X}_{-1}^{T} \mathbf{X}_{-1}\right)^{-1} \mathbf{X}_{-1}^{T}$, and let $\mathbf{X}_{1 \backslash-1}=\left(\mathbf{I}-\mathbf{P}_{-1}\right) \mathbf{X}_{1}$ be the residuals from regressions of the columns of \mathbf{X}_{1} onto the columns of \mathbf{X}_{-1}.
(a) Let $\hat{\mathbf{Y}}_{1}=\mathbf{X}_{1} \hat{\boldsymbol{\beta}}_{1}$ and let $\hat{\mathbf{Y}}_{-1}=\mathbf{X}_{-1} \hat{\boldsymbol{\beta}}_{-1}$.
i. Show that the normal equations $\left(\mathbf{X}^{T} \mathbf{X}\right) \hat{\boldsymbol{\beta}}=\mathbf{X}^{T} \mathbf{Y}$ are equivalent to

$$
\begin{aligned}
\hat{\mathbf{Y}}_{1} & =\mathbf{P}_{1}\left(\mathbf{Y}-\hat{\mathbf{Y}}_{-1}\right) \\
\hat{\mathbf{Y}}_{-1} & =\mathbf{P}_{-1}\left(\mathbf{Y}-\hat{\mathbf{Y}}_{1}\right)
\end{aligned}
$$

ii. Show that

$$
\left(\begin{array}{lc}
\mathbf{I} & \mathbf{P}_{1} \\
\mathbf{P}_{-1} & \mathbf{I}
\end{array}\right)\binom{\hat{\mathbf{Y}}_{1}}{\hat{\mathbf{Y}}_{-1}}=\binom{\mathbf{P}_{1} \mathbf{Y}}{\mathbf{P}_{-1} \mathbf{Y}} .
$$

(b) Show that $\hat{\mathbf{Y}}_{1}=\left(\mathbf{I}-\mathbf{P}_{1} \mathbf{P}_{-1}\right)^{-1} \mathbf{P}_{1}\left(\mathbf{I}-\mathbf{P}_{-1}\right) \mathbf{Y}$.
(c) The Gauss-Seidel or backfitting algorithm for finding $\hat{\mathbf{Y}}_{1}$ and $\hat{\mathbf{Y}}_{-1}$ is the following:

Initialize $\hat{\mathbf{Y}}_{1} \leftarrow \mathbf{0}$ and $\hat{\mathbf{Y}}_{-1} \leftarrow \mathbf{0}$. Then repeat the steps
i. $\hat{\mathbf{Y}}_{1} \leftarrow \mathbf{P}_{1}\left(\mathbf{Y}-\hat{\mathbf{Y}}_{-1}\right)$
ii. $\hat{\mathbf{Y}}_{-1} \leftarrow \mathbf{P}_{-1}\left(\mathbf{Y}-\hat{\mathbf{Y}}_{1}\right)$
until $\hat{\mathbf{Y}}_{1}$ and $\hat{\mathbf{Y}}_{-1}$ do not change.
Show that in the k th iteration of the backfitting algorithm, we have

$$
\hat{\mathbf{Y}}_{1}^{(k)} \leftarrow\left[\mathbf{I}-\sum_{l=0}^{k-1}\left(\mathbf{P}_{1} \mathbf{P}_{-1}\right)^{l}\left(\mathbf{I}-\mathbf{P}_{1}\right)\right] \mathbf{Y}
$$

(d) Show that

$$
\mathbf{I}-\sum_{l=0}^{\infty}\left(\mathbf{P}_{1} \mathbf{P}_{-1}\right)^{l}\left(\mathbf{I}-\mathbf{P}_{1}\right)=\left(\mathbf{I}-\mathbf{P}_{1} \mathbf{P}_{-1}\right)^{-1} \mathbf{P}_{1}\left(\mathbf{I}-\mathbf{P}_{-1}\right)
$$

in consequence of which $\hat{\mathbf{Y}}_{1}^{(k)} \rightarrow \hat{\mathbf{Y}}_{1}$ as $k \rightarrow \infty$. You will make use of the fact that for any real-valued square matrix $\mathbf{A}, \mathbf{I}+\mathbf{A}+\mathbf{A}^{2}+\cdots=(\mathbf{I}-\mathbf{A})^{-1}$, provided $\lambda_{\max }\left(\mathbf{A}^{T} \mathbf{A}\right)<1$, and you may assume $\lambda_{\max }\left(\mathbf{P}_{1} \mathbf{P}_{-1} \mathbf{P}_{1}\right)<1$.

References

[1] John F Monahan. A primer on linear models. CRC Press, 2008.
[2] Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Science \& Business Media, 2008.

