
STAT 824 hw 04
Orthogonal series estimator, backfitting, sparse backfitting, bootstrap

1. Suppose {ϕj}∞j=1 is a basis for all functions f : [0, 1]→ R such that
∫ 1

0
|f(x)|2dx <∞ which satisfies∫ 1

0

ϕj(x)ϕj′(x)dx =

{
1, j = j′

0, j 6= j′.
(1)

A basis with the above property is called an orthonormal basis. Assume we can represent f as

f(x) =
∞∑
i=1

θjϕj(x), where θj =

∫ 1

0

f(x)ϕj(x)dx, j = 1, 2, . . .

We will consider estimating the approximation fNn (x) =
∑N

i=1 θjϕj(x) for some finite N in the context
of nonparametric regression.

(a) Consider the trigonometric basis, which is given by ϕ1(x) = 1, ϕ2k(x) =
√

2 cos(2πkx), and
ϕ2k+1(x) =

√
2 sin(2πkx) for k = 1, 2, . . . for x ∈ [0, 1]. Show that this basis is orthonormal,

i.e. that it satisfies 1.

It’s a little laborious, but you have to show∫ 1

0

ϕ1(x)ϕ1(x) = 1∫ 1

0

ϕ1(x)ϕ2k(x) = 0∫ 1

0

ϕ1(x)ϕ2k+1(x) = 0∫ 1

0

ϕ2k(x)ϕ2k′+1(x) = 0∫ 1

0

ϕ2k(x)ϕ2k′(x) =

{
1, k = k′

0, k 6= k′∫ 1

0

ϕ2k+1(x)ϕ2k′+1(x) =

{
1, k = k′

0, k 6= k′,

which can be done with the aid of a calculus book giving antiderivatives for products of sines
and cosines.

(b) Let (X1, Y1), . . . , (Xn, Yn) be data pairs such that Yi = f(Xi) + εi, where Xi = i/n, i = 1, . . . , n
and ε1, . . . , εn are independent with mean zero and variance σ2 <∞. Consider the estimator f̂Nn
of f given by

f̂Nn (x) =
N∑
j=1

θ̂jϕj(x), where θ̂j = n−1
n∑
i=1

Yiϕj(Xi), j = 1, . . . , N. (2)

This type of estimator is called an orthogonal series estimator. See [2] for more details.



i. For x ∈ [0, 1], find weights Wn1(x), . . . ,Wnn(x) such that f̂Nn (x) =
∑n

i=1Wni(x)Yi.

We have

Wni(x) =
1

n

N∑
j=1

ϕj(Xi)ϕj(x).

ii. Give the entries of the matrix S such that f̂Nn = SY, where f̂Nn = (f̂Nn (X1), . . . , f̂
N
n (Xn))T

and Y = (Y1, . . . , Yn)T .

The smoother matrix S is given by

S =

 n−1
∑N

j=1 ϕj(X1)ϕj(X1) . . . n−1
∑N

j=1 ϕj(Xn)ϕj(X1)
...

. . .
...

n−1
∑N

j=1 ϕj(X1)ϕj(Xn) . . . n−1
∑N

j=1 ϕj(Xn)ϕj(Xn)



iii. Give the matrix B such that S = (1/n)BBT .

We can set B = (ϕj(Xi))1≤i≤n,1≤j≤N .

iv. Generate data with the R code

m <- function(x){ - 25 * 4 * (2*x - 1) * dnorm(4*(2*x - 1))}

n <- 200

X <- c(1:n)/n

Y <- m(X) + rnorm(n,0,1)

Then make a scatterplot of the data with a curve overlaid which traces the fitted values
f̂Nn (X1), . . . , f̂

N
n (Xn) of the estimator in (2) based on the trigonometric basis with functions

for k = 1, . . . , 20, such that N = 41. My plot looks like this:
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Here is my code:

K <- 20 # makes N = 2 * K + 1 basis functions

B <- matrix(1,n,2*K + 1)

for( k in 1:K){

B[,2*k] <- sqrt(2) * cos( 2*pi*k*X)

B[,2*k + 1] <- sqrt(2) * sin( 2*pi*k*X)

}

S <- (1/n) * B %*% t(B)

m.hat <- S %*% Y

plot(Y ~ X, col = "gray")

lines(m.hat ~ X)

v. What do you notice about the quantities n−1
∑n

i=1 ϕj(i/n)ϕj′(i/n), 1 ≤ j, j′ ≤ N , in relation
to the property in (1)? Hint: These are the entries of the matrix (1/n)BTB, which you can
compute in R.

We find that (1/n)BTB = In, so that when Xi = i/n for i = 1, . . . , n, the trigonometric
basis is orthonormal with respect to the empirical distribution of X1, . . . , Xn.

vi. Now consider using the trigonometric basis with functions for k = 1, . . . , K, giving N = 2K+1
total basis functions: Choose K via leave-one-out crossvalidation (note that you can use the
special trick for linear estimators to save computation time). Report the chosen value of K
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and the corresponding number of basis functions N . Also make a scatterplot of the data with
the curve tracing the fitted values overlaid.

For my data, leave-one-out crossvalidation selected K = 3, giving N = 2(3) + 1 = 7 total
basis functions. Here is the plot:
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2. Import into R the data in this .Rdata file and fit the additive model

Y = µ+m1(X1) + · · ·+m8(X8) + ε

with a soft-thresholded (sparse) Nadaraya-Watson backfitting estimator, enforcing the usual identifi-
ability condition on the additive components.

(a) Give µ̂.

We estimate µ with µ̂ = Ȳn = 4.

(b) Make a plot like the one pictured below (choose a bandwidth h and a soft-thresholding parameter
just by eyeballing the plot), where in panel j, the points (Yi −

∑
k 6=j m̂k(Xik), Xkj), i = 1, . . . , n,

are plotted along with a line tracing the fitted values m̂j(Xij), i = 1, . . . , n.
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Nadaraya−Watson soft−thresholded backfitting estimator

(c) Now fit Nadaraya-Watson backfitting estimator without soft-thresholding; make a similar plot.

Mine looks like this
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Nadaraya−Watson backfitting estimator

3. Let (X1, Y1), . . . , (Xn, Yn) be iid realizations of (X, Y ). Let ρ = corr(X, Y ) and ρ̂ be the sample

correlation. If (X, Y ) are bivariate Normal then
√
n(ζ(ρ̂)− ζ(ρ))

D−→ Normal(0, 1) as n→∞ where

ζ(ρ) =
1

2
log

(
1 + ρ

1− ρ

)
.

(a) Let Y |X ∼ Normal(ρX, 1− ρ2), X ∼ Normal(0, 1) so that (X, Y ) are bivariate standard Normal
with correlation ρ. For α = 0.05, n = 50, ρ = 1/2, and B = 500, run a simulation with 500
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simulated data sets to compare the coverage of ρ and the average width of the three intervals

An = [ζ−1(ζ(ρ̂)− n−1/2zα/2), ζ−1(ζ(ρ̂) + n−1/2zα/2)]

Bpctl
n = [ρ̂∗((α/2)B)

n , ρ̂∗((1−α/2)B)
n ]

Bpiv
n = [ζ−1(2ζ̂n − ζ̂∗((1−α/2)B)

n ), ζ−1(2ζ̂n − ζ̂∗((α/2)B)
n )],

where ζ−1(z) = e2z−1
e2z+1

, ρ̂
∗(1)
n ≤ · · · ≤ ρ̂

∗(B)
n are sorted bootstrap realizations of ρ̂ from samples

drawn with replacement from (X1, Y1), . . . , (Xn, Yn), and ζ̂
∗(b)
n = ζ(ρ̂

∗(b)
n ) for b = 1, . . . , B with

ζ̂n = ζ(ρ̂n).

I obtained
asymp boot pctl boot piv

coverage 0.950 0.946 0.952
avg width 0.409 0.416 0.420

(b) Now let Y |X ∼ Normal(X, σ2), X ∼ Exponential(λ) with λ = 1 and σ2 = 3. Find ρ = corr(X, Y )
and compare the coverage of ρ and the width of the intervals for α = 0.05, n = 50, and B = 500
as before.

I obtained
asymp boot pctl boot piv

coverage 0.916 0.924 0.930
avg width 0.409 0.454 0.446

(c) Why does the asymptotic interval An perform poorly under the settings in part (b)?

The result
√
n(ζ(ρ̂)− ζ(ρ))

D−→ Normal(0, 1) depends on (X, Y ) having the bivariate Normal
distribution. Since this is not the case, the asympototic variance may be incorrect. It seems
that the assumption of Normality is very important to the reliability of this interval.

(d) Which interval performed best in parts (a) and (b)?

For me the very basic percentile interval performed the best. Very cool!

4. (Optional) Let X ∈ Rn×p, p < n, be a full-rank matrix and let Y ∈ Rn and partition the columns
of X such that X = [X1,X−1]. Let β̂ ∈ Rp be the vector such that (XTX)β̂ = XTY and let β̂ be
partitioned in the same way as X into

β̂ =

[
β̂1

β̂−1

]
.

Define P1 = X1(X
T
1X1)

−1XT
1 and P−1 = X−1(X

T
−1X−1)

−1XT
−1, and let X1\−1 = (I − P−1)X1 be the

residuals from regressions of the columns of X1 onto the columns of X−1.

(a) Let Ŷ1 = X1β̂1 and let Ŷ−1 = X−1β̂−1.
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i. Show that the normal equations (XTX)β̂ = XTY are equivalent to

Ŷ1 = P1(Y − Ŷ−1)

Ŷ−1 = P−1(Y − Ŷ1).

The normal equations[
XT

1X1 XT
1X−1

XT
−1X1 XT

−1X−1

] [
β̂1

β̂−1

]
=

[
XT

1Y1

XT
−1Y−1

]
are equivalent to

(XT
1X1)β̂1 + (XT

1X−1)β̂−1 = XT
1Y

(XT
−1X1)β̂1 + (XT

−1X−1)β̂−1 = XT
−1Y.

These equations are in turn equivalent to

β̂1 = (XT
1X1)

−1[XT
1Y −XT

1X−1β̂−1]

β̂−1 = (XT
−1X−1)

−1[XT
−1Y −XT

−1X1β̂1].

From here we may write

X1β̂1 = X1(X
T
1X1)

−1XT
1 [Y −X−1β̂−1]

X−1β̂−1 = X−1(X
T
−1X−1)

−1XT
−1[Y −X1β̂1],

which is what we wished to show.

ii. Show that (
I P1

P−1 I

)(
Ŷ1

Ŷ−1

)
=

(
P1Y
P−1Y

)
.

From what we proved in the previous part, we may write

Ŷ1 = P1Y −P1Ŷ−1

Ŷ−1 = P−1Y −P−1Ŷ1,

giving

Ŷ1 + P1Ŷ−1 = P1Y

Ŷ−1 + P−1Ŷ1 = P−1Y.

Writing the left side as a matrix multiplication gives the claim.
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(b) Show that Ŷ1 = (I−P1P−1)
−1P1(I−P−1)Y.

Using the block-matrix inversion formula, what we proved in the previous part gives

Ŷ1 = (I−P1P−1)
−1P1Y − (I−P1P−1)

−1P1P−1Y

= (I−P1P−1)
−1P1(I−P−1)Y.

(c) The Gauss–Seidel or backfitting algorithm for finding Ŷ1 and Ŷ−1 is the following:

Initialize Ŷ1 ← 0 and Ŷ−1 ← 0. Then repeat the steps

i. Ŷ1 ← P1(Y − Ŷ−1)

ii. Ŷ−1 ← P−1(Y − Ŷ1)

until Ŷ1 and Ŷ−1 do not change.

Show that in the kth iteration of the backfitting algorithm, we have

Ŷ
(k)
1 ←

[
I−

∑k−1
l=0 (P1P−1)

l(I−P1)
]
Y.

We have

Ŷ
(1)
1 ← P1(Y − 0)

Ŷ
(1)
−1 ← P1(Y − Ŷ

(1)
1 ) = P−1Y −P−1P1Y

Then

Ŷ
(2)
1 ← P1(Y − Ŷ(1)) = P1Y −P1P−1Y + P1P−1P1Y

Ŷ
(2)
−1 ← P1(Y − Ŷ1) = P−1Y −P−1P1Y + P−1P1P−1Y −P−1P1P−1P1Y

The pattern continues, and we have

Ŷ
(3)
1 = P1Y −P1P−1P1Y + P1P−1P1P−1Y −P1P−1P1P−1P1Y

=

[
P1 −

2∑
l=1

(P1P−1)
l(I−P1)

]
Y

=

[
I−

2∑
l=0

(P1P−1)
l(I−P1)

]
Y.

From this we see that we will have

Ŷ
(k)
1 =

[
I−

k−1∑
l=0

(P1P−1)
l(I−P1)

]
Y.
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(d) Show that

I−
∞∑
l=0

(P1P−1)
l(I−P1) = (I−P1P−1)

−1P1(I−P−1),

in consequence of which Ŷ
(k)
1 → Ŷ1 as k → ∞. You will make use of the fact that for any

real-valued square matrix A, I + A + A2 + · · · = (I −A)−1, provided λmax(A
TA) < 1, and you

may assume λmax(P1P−1P1) < 1.

We have

I−
∞∑
l=0

(P1P−1)
l(I−P1) = I−

∞∑
l=0

(P1P−1)
l +

∞∑
l=0

(P1P−1)
lP1

= −
∞∑
l=1

(P1P−1)
l +

∞∑
l=0

(P1P−1)
lP1

= −
∞∑
l=0

(P1P−1)
lP1P−1 +

∞∑
l=0

(P1P−1)
lP1

=
∞∑
l=0

(P1P−1)
l(P1 −P1P−1)

= (I−P1P−1)
−1P1(I−P−1),

since λmax(P−1P1P−1) = λmax(P1P−1P1) < 1. This is using the fact that ATA and AAT

have the same nonzero eigenvalues (pg. 266 of Monahan [1]). This shows that the Gauss–
Seidel, or backfitting algorithm, works.

It is worthwhile to consider the condition λmax(P1P−1P1) < 1. This condition, we find, is
satisfied if the matrix X has full-column rank. To see why, define

ρ = sup

{
hT1 h2

‖h1‖2‖h2‖2
, 0 6= h1 ∈ C(X1), 0 6= h2 ∈ C(X−1)

}
.

If X = [X1 X−1] has full-column rank, then its columns are linearly independent, meaning
that, given a linear combination h1 of the columns of X1, we cannot find a linear combination
h2 of the columns of X−1 that is equal to h1. This gives ρ < 1. Using this fact, we write

sup
x∈Rn

xTP1P−1P1x

‖P1x‖2‖P−1P1x‖2
< 1 =⇒ xTP1P−1P1x < ‖P1x‖2‖P−1P1x‖2 ∀x ∈ Rn. (3)

Since P1 is a projection matrix, ‖P1x‖2 ≤ ‖x‖2 for all x, since

sup
x∈Rn

‖P1x‖2
‖x‖2

= sup
x∈Rn

√
xTP1x

‖x‖22
=
√
λmax(P1),

and the eigenvalues of a projection matrix are all in {0, 1}. Applying this also to P−1, we
have

‖P1x‖2‖P−1P1x‖2 ≤ ‖x‖22,
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so that (3) gives

λmax(P1P−1P1) = sup
x∈Rn

xTP1P−1P1x

‖x‖22
< 1.
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