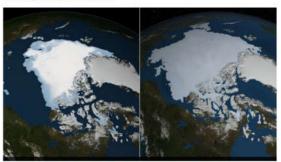
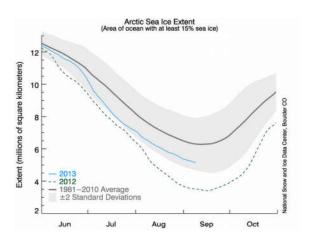

STAT 515 Statistical Methods I Sections 2.4-2.5 The Variance and Standard Deviation Brian Habing Department of Statistics **University of South Carolina** Redistribution of these slides without permission is a violation of copyright law. **Outline** · The logic behind the variance and standard deviation · The Empirical Rule and Chebychev's Inequality Z Scores **Example** Consider the data set 2, 3, 3, 4, 8

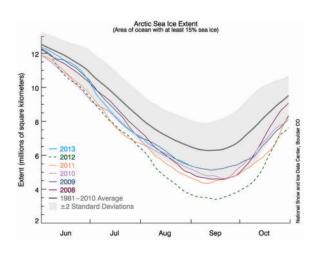
Measures of Variability	
A measure of variability describes how spread out the data is.	
Three common measures of spread are the range, the standard deviation, and the inter-	
quartile range.	
The Range	
The Range is the largest observation minus the smallest observation.	
Something more informative?	

-	


The Standard Deviation		
Variance:		
	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1}$	
Standard Deviation:		
Glandard Deviation.	$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$	
	$s = \sqrt{\frac{i=1}{n-1}}$	
00	05.00.7	
68-	95-99.7	
As we will see in Chapter 5, for a "normal distribution" roughly 68% of the observations fall within 1s of the mean, 95% within 2s, and 99.7 within 3s. (Text suggests range/4 to	y 68% of the observations	
range/6 as an estin	nate of s.)	

Chebyshev's Inequality	
Chebyshev's inequality says that at least 1-1/k² of the data must be within k standard deviations of the mean for any distribution (that has a mean and sd). Equivalently that at most 1/k² of the data can be further than k standard deviations away from the mean.	
Example	
Starting salaries in your field have a mean of \$31,000 and a standard deviation of \$5,000. What can we say about the percent with a starting salary between \$26,000 and \$36,000?	


Arctic sea ice up 60 percent in 2013


Published September 09, 2013 / FaxNews.com

Email

About a million more square miles of ocean are covered in ice in 2013 than in 2012, a whopping 60 percent increase -- and a dramatic

Others	
A huge number of other bounds also exist (check out Chebyshev's inequality on Wikipedia for example).	
The Vysochanskiï-Petunin inequality says that for a unimodal distribution that at most the,	
percent of observations more than k standard deviations from the mean is the maximum of $(4/(3k^2) - 1/3 \text{ and } 4/(9k^2))$	
Conditions such as continuity and symmetry can also affect the bounds.	
Z-Scores	
2-3 00165	
The 100 Greenest Companies in America	
Inside NEWSWEEK's exclusive rankings of the world's most environmentally friendly companies	
GREEN RANKINGS 2010 -	
Our exclusive environmental ranking of the 500 largest U.S. companies and the 100 biggest global corporations.	
RANKING THE COMPANIES To calculate a company's overall ranking, the three component scores were standardized, combined using a weighted average, and mapped to a 100-point scale for publication.	
The raw component scores were first converted to standardized values called Z scores, which reflect how individual companies performed in relation to the average for each of the three scores. These Z scores serve as a common metric, allowing environmental impact, green policies,	
and reputation—which were measured in very different ways—to be compared, much the way fractions must be converted to have a common denominator before they can be added together.	