Brian Habing – University of South Carolina

Last Updated: February 2, 2017

S5.6 – Relating the Poisson and Exponential

Section 4.5 introduces the Poisson random variable with 4 basic characteristics. We say that something that follows these rules follows a Poisson process.

- 1) The experiment consists of counting the number of times (let's use Y this time) that a certain event occurs during some given amount of time (or area, volume, weight, distance, or any other unit of measurement).
- 2) The probability that an event occurs in any unit of measurement is the same for all units of that size.
- 3) The number of events that occur in one unit of measurement is independent of the number that occur in other units.
- 4) The mean number of events that occur in one unit of measurement is denoted by the Greek letter lambda (λ) .

As given on page 215 the probability mass function for a Poisson random variable is $P[Y = y] = \frac{\lambda^y e^{-\lambda}}{y!}$ for x=0, 1, 2,

Imagine that we have something that follows a Poisson process with parameter λ /unit, but we want to know about the random variable X=amount of time until the first event. One way to approach this is to try and figure out the cumulative distribution function for X.

$$P[X \le x] = P[1^{st} \text{ event happens before the } x^{th} \text{ unit of time}]$$

= 1 – P[1st event happens after the x^{th} unit of time]
= 1 – P[there are 0 events before time x]

The probability of having no failures before a given time is a Poisson random variable! The only complication is adjusting the rate to be over *x* units of time instead of 1 unit.

$$\frac{\lambda}{(1\,unit\,of\,time)} = \,\frac{x}{x} \cdot \,\frac{\lambda}{(1\,unit\,of\,time)} = \,\,\frac{x\lambda}{(x\,units\,of\,time)}$$

So, plugging in the probability of seeing 0 failures for a Poisson distribution with parameter $x\lambda$ gives:

$$P[X \le x] = 1 - P[\text{there are 0 failures before time } x]$$
$$= 1 - \frac{(x\lambda)^0 e^{-x\lambda}}{0!}$$
$$= 1 - e^{-x\lambda}$$

This also gives

$$P[X \ge x] = P[X > x] = 1 - P[X \le x] = e^{-x\lambda}$$

Compare this to the formula for Figure 5.28 in the middle of page 268. If we set $\lambda = 1/\theta$ this is exactly the same as an exponential distribution!

So there are two ways to write out (or "parameterize") an exponential distribution:

<u>Parameterization 1:</u> If λ is the parameter for a Poisson process (the number of events expected in each unit of time), then:

$$f(y) = \lambda e^{-x\lambda}$$
 $P[X \le x] = 1 - e^{-x\lambda}$ $\mu = \frac{1}{\lambda}$ $\sigma = 1/\lambda$

This parameterization with lambda is the one that R uses (lambda is the "rate parameter").

Parameterization 2: If θ is the expected amount of time until the first occurrence, then:

$$f(y) = \frac{1}{\theta} e^{-x/\theta} \qquad P[X \le x] = 1 - e^{-x/\theta} \qquad \mu = \theta \qquad \sigma = \theta$$

In R, you need to use $1/\theta$ as the rate parameter. To answer example 5.14 in R we would use $1-P[X \le 5] = 1-pexp(5,1/2)$ where the ½ is $1/\theta$.

The particular parameterization you should use depends on what information you were given. Were you told how many events were expected to occur in a unit of time (λ) or how long you expected to wait until the first event (θ)?

You can also use the relationship $\lambda=1/\theta$ to switch between the two ways of looking at it.

Example 5.15 (page 269) continued

- e) What is the λ parameter of the Poisson process that the magnetron tubes life-spans follow?
- f) What is the expected number of tube failures in one year?
- g) Using R, what is the probability of observing two or fewer failures in one year?

Solution: $\theta = 6.25$ years is the average lifespan, so the parameter $\lambda = 1/\theta = 1/6.25$ years = 0.16/year since λ is the mean of the Poisson distribution. The expected number of failures in one year is 0.16. Using R to find P[Y \le 2] for a Poisson 0.16, would be ppois (2, .16) which is approximately 99.94%

Example 4.14 (page 215) continued:

- e) What is the expected amount of time until the first whale is observed?
- f) What is the probability that the first whale will be observed by half-way through the week?

Solution: This is a Poisson process with $\lambda=2.6$ /week. The expected time until the first whale is observed is the expected value of the exponential distribution with this parameter, so $1/\lambda=1/(2.6$ /week) = week/0.385 \approx 0.385 weeks which is around 2.7 days. The probability that the first whale will be observed by half-way through the week is $P[X \le 0.5]$ for the exponential distribution = $1 - e^{-\lambda x} = 1 - e^{-2.6 (0.5)} = 1 - e^{-1.3} \approx 0.727$. This could also be found using pexp(0.5, 2.6) in R.