Principal Components

\[Y = a_1X_1 + a_2X_2 + \cdots + a_qX_q \]

or

\[Y_{(nxq)} = X_{(nxq)}A_{(qxq)} \]

Reversing It

If we have \(Y \) we should be able to get \(X \)... say using regression.

In fact in this case we should get it exactly!

\[Y_{(nxq)}A^{-1}_{(qxq)} = X_{(nxq)}A_{(qxq)}A^{-1}_{(qxq)} \]

\[X_{(nxq)} = Y_{(nxq)}A^{-1}_{(qxq)} \]
Checking What Was Lost

\texttt{sect3<-as.matrix(oildata[,12:31])}
\texttt{a<-eigen(cov(sect3))$vectors}
\texttt{y<-sect3%*%a}
\texttt{summary(lm(sect3[,1]~y))$r.squared}

What if we only kept 4 PC’s?

\texttt{y4<-y[,1:4]}
\texttt{summary(lm(sect3[,1]~y4))$r.squared}
\texttt{sect3est<-sect3}
\texttt{for (i in 1:20)
 sect3est[,i]<-
 lm(sect3[,i]~y4)$fitted.values}

Lots of Lost Information!

\texttt{s3var<-apply(sect3,2,var)}
\texttt{s3varest<-apply(sect3est,2,var)}
\texttt{cbind(s3var,s3varest)}
\texttt{cor(sect3)[1:4,1:4]}
\texttt{cor(sect3est)[1:4,1:4]}
Factor Analysis

Factor Analysis models are designed to account for this missing data by adding an error term to the model. (Assuming the X have been set to have mean 0.)

\[X_1 = a_{11}F_1 + a_{12}F_2 + \cdots + a_{1k}F_k + \varepsilon_1 \]
\[X_2 = a_{21}F_1 + a_{22}F_2 + \cdots + a_{2k}F_k + \varepsilon_2 \]
\[\vdots \]
\[X_q = a_{q1}F_1 + a_{q2}F_2 + \cdots + a_{qk}F_k + \varepsilon_q \]

Assumptions

- The u_i are independent of each other and of the F_i
- The F_i are independent of each other
- Usually set the F_i to have mean 0 and variance 1
The Variances
We have:
\[X_i = \lambda_{i1}F_1 + \lambda_{i2}F_2 + \cdots + \lambda_{ik}F_k + u_i \]

What can we tell about the variances and covariances?

In Matrix Form
If we write
\[X_{qx1} = \Lambda_{qxd}F_{kx1} + u_{qx1} \]

Then
\[\Sigma = \Lambda_{qxd}\Lambda_{kxq}^T + \text{cov}(u) \]

What’s Next
• How does it work?
• Any restrictions on the data?
• How many factors?
• Rotating the data
• Interpreting the results
• Using the results
• Graphically displaying the findings