So Far

Principal Components
- Produces an orthogonal representation of the original data
- Allows counting the number of dimensions that explain the most variation in the original data set
- No statistical model
- Works for interval scale data

So Far

Factor Analysis
- Fits a model to explain the observed variables in terms of underlying latent factors
- Lots of options
- Is a linear model that requires interval data
- Some procedures require multivariate normality
So Far
Multidimensional Scaling
• Provides a graphical display of high dimensional data in fewer dimensions
• Can work with any kind of data if the appropriate distance measure is used
• Classical method is equivalent to principal components
• Non-metric methods allow for presenting more groups in fewer dimensions and better focus on small distances

So Far
Cluster Analysis
• Provides a graphical display of high dimensional data by producing a dendogram of various clusters.
• Can work with any kind of data if the appropriate distance measure and linkage are used
• No definitive way of choosing the right number of clusters.

So Far
MANOVA
• Provides a test of the hypothesis that several populations have the same mean vector
• Assumes multivariate normality, equal covariances, and independence
• This often isn’t the actual question of interest
So Far

Discriminant Analysis
- Finds the linear combinations of variables that best distinguishes between the groups of interest
- Works with any interval data
- Is the optimal procedure if the data is multivariate normal with equal covariances
- Provides posterior probabilities assuming the equal covariance normality

So Far

Logistic Regression
- Predicts group membership from interval scale variables
- If the logistic curve is appropriate it provides a test of the hypothesis similar to MANOVA
- If the logistic curve is appropriate it provides a predicted group membership
- Does not require multivariate normality

Next

Today: Overview of multiple regression and introduction to canonical correlation analysis

Thursday 17th: Homework 8 is due, canonical correlation analysis continued

Tuesday 22nd: Brief homework 9 is due, final exam is posted, begin optional topic and course evals
Next
Thursday 24th: Thanksgiving – No Class
Tuesday 29th: Optional topic continued
Thursday 1st: Homework 10 is due, ice cream field trip as penance for Homework 6 grade being late! With time for questions while we eat.
5:30pm Tuesday, December 6th – Final Exam is Due

Motivating Data Set
Consider the energy crisis data…

Factors that affect transportation decisions
- Economy
- Convenience
- Low Energy Use
- Dependability

Motivating Data Set
Views on the Energy Crisis
- Q1 - If the energy shortage gets any worse, the country will be in bad shape.
- Q4 - Saving energy requires you to make major sacrifices.
- Q6 - Utility companies should be allowed to burn cheaper fuel even though this would cause more pollution.
- Q9 - Rationing of energy resources will be necessary for at least the next five years.
- Q10 - Conserving electricity will save me money in the long run.
Motivating Data Set

- Q13 - There is not much an average citizen can do to save electricity.
- Q17 - We should forget about reducing pollution until our energy problems are solved.
- Q18 - My personal conservation efforts have little impact on total consumption of energy.
- Q19 - Because of the abundance of coal, industries should be encouraged to switch to coal as a fuel despite the air pollution it causes.

The Question

How do the answers to the survey questions relate to the factors determining what kind of transportation people use?

Multiple Regression

\[ y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_q x_{iq} + \epsilon_i \]

Where the \( \epsilon \) are
- Normally distributed
- Have mean zero
- Have constant variance
- Are independent