Chapter 1: #56 (define the sample space and relevant events, and give the probabilities of the sample points)
For the sample space use the notation (oldest youngest) with G=girl and B=boy.
{(BB),(GG),(GB),(BG)} with each having probability ¼.

\[
P(\text{Both Girls }| \text{ Oldest is a Girl}) = \frac{P(\text{Both Girls } \cap \text{ Oldest is a Girl})}{P(\text{Oldest is a Girl})} = \frac{P(\text{GG})}{P(\text{GG} \cup \text{GB})} = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{4}} = \frac{1}{2}
\]

\[
P(\text{Both Girls }| \text{ At least one G}) = \frac{P(\text{Both Girls } \cap \text{ At least one G})}{P(\text{At least one G})} = \frac{P(\text{GG})}{P(\text{GG} \cup \text{GB} \cup \text{BG})} = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}} = \frac{1}{3}
\]

#65: By the addition rule we have \(P((A \cap B) \cup (A \cap B^C)) = P(A) + P(B) - P(A \cap B).
As (A \cap B) and (A \cap B^C) are disjoint, this becomes: \(P(A) = P(A \cap B) - P(A)P(B) = P(A) - P(A)P(B)\)
And \(P(A \cap B^C) = P(A)P(B^C)\) is the definition of A and B^C being independent.

By the addition rule we have \(P((A \cap B^C) \cup (A^C \cap B)) = P(A \cap B^C) + P(A^C \cap B) - 0\)
As (A \cap B^C) and (A^C \cap B) are disjoint, this becomes: \(P(B^C) = P(A \cap B^C) + P(A^C \cap B)\)
As A and B^C are independent this becomes: \(P(B^C) = P(A) - P(A)P(B) = P(A) - P(A)P(B)\)
And \(P(A^C \cap B) = P(A)P(B)\) is the definition of A^C and B being independent.

#66: \(P(\emptyset \cap A) = P(\emptyset) = 0 = P(A) = P(\emptyset) P(A)\)

Chapter 1: #38: There are 6! ways of arranging six blocks, but we don’t care about the order of the three reds or three greens, so \(\binom{6}{3} = \frac{6!}{3!3!} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{3! \cdot 3 \cdot 2 \cdot 1} = \frac{120}{6} = 20\)

Similarly: \(\binom{6}{3,3,3} = \frac{9!}{3!3!3!} = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3!}{3! \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = \frac{60480}{36} = 1680\)

#42: \(\binom{11}{4,3,3,1} = \frac{11!}{4!3!3!1!} = \frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4!}{4! \cdot 3! \cdot 3! \cdot 1 \cdot 1} = \frac{1663200}{36} = 46200\)

#57: Let A, B, and C be the three respective cabinets. Let S be that a silver was found in the first drawer. Finally, notice the only way a silver can be in both is to get drawer B, so what we want is \(P(B|S)\). By Bayes’ rule we get: \(P(B|S) = P(S|B) / \left[P(S|A) + P(S|B) + P(S|C) \right] = 1 / (0 + 1 + \frac{1}{2}) = 2/3\)
Chapter 1: #17 (you may treat it as a binomial or hypergeometric; give the formula for \(p=0.2 \); use R to make the graph, plotting the values \(p=0,0.05,0.1,0.15,0.2, \) and 0.25)

The population size is 100, the number of defectives is \(m \), the number sampled is 4, and the number of defective founds is \(x \). Note in this case that \(p=m/100 \) and so \(m=100p \).

So, \(P[\text{accept lot}]=P[0 \text{ defective}] = \begin{pmatrix} 100p \\ 0 \end{pmatrix} \begin{pmatrix} 100-100p \\ 4 \end{pmatrix} \begin{pmatrix} 100 \\ 4 \end{pmatrix} \)

For \(p=0.2 \) this is \(\begin{pmatrix} 20 \\ 0 \end{pmatrix} \begin{pmatrix} 80 \\ 4 \end{pmatrix} = \frac{80!}{76!4!} = \frac{80 \cdot 79 \cdot 78 \cdot 77}{96!4!} \cdot \frac{100!}{100!} \cdot \frac{100\cdot 99 \cdot 98 \cdot 97}{96!4!} = 0.4033382 \)

\[
\text{percdef<-c(0,0.05,0.10,0.15,0.2,0.25)}
\]
\[
\text{numbad<-100*percdef}
\]
\[
\text{numgood<-100-numbad}
\]
\[
\text{probaccept<-dhyper(0,numbad,numgood,4)}
\]
\[
\text{plot(percdef,probaccept,type="l",xlim=c(0,.25),ylim=c(0,1))}
\]
Chapter 1: #18a So $P[\text{at least 1 defective}]=0.9$ is the same as $P[0 \text{ defective}]=0.1$. Using the hypergeometric we get:

$$
\binom{10}{0}\left(\frac{990}{m}\right) = \frac{990!}{m!(990-m)!} \cdot \frac{1000!}{1000!} = \frac{990!}{m!(1000-m)!} = \frac{1000-m}{1000!} \cdots (991-m)
$$

There is no nice way to solve this directly.

Using brute force in R:

```r
f<-function(m,n=1000,k=10){
  prod((n-m):(n-m-k+1))/prod(n:(n-k+1))
}
values<-cbind( m=1:1000 , prob=sapply(1:1000,f) )
round(values,4)

[204,]  204 0.1009
[205,]  205 0.0997
```

So we get 205.

Or, if you say that 1000 is big relative to the m then we have approximately

$$
0.1 = \frac{(1000-m)\cdots(991-m)}{1000\cdots991} \approx \frac{(1000-m)^{10}}{1000^{10}}
$$

$$
\Rightarrow 0.1(1000)^{10} = (1000-m)^{10}
$$

$$
\Rightarrow 0.1(1000)^{10} = 1000 - m
$$

$$
\Rightarrow m = 1000 - [0.1(1000)^{10}]^{0.1} = 205.6718
$$

So approximately 206 (which is pretty close to the actual value of 205).

#35a: \[\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!(n-r)!} = \binom{n}{n-r} \]

When you select r out of n without replacement the remainder is a sample of $n-r$.

#36: Using proposition B on page 12 it is just

$$
\binom{7}{3} = \frac{7!}{3!(7-3)!} = \frac{7!}{3!4!} = \frac{7\cdot6\cdot5\cdot4!}{3\cdot2\cdot1\cdot4!} = \frac{210}{6} = 35
$$
Chapter 2: #1 (also calculate the mean and variance)

\[\mu = E(X) = \sum x p(x) = 0(0.25) + 1(0.125) + 2(0.125) + 3(0.5) = 0.125 + 0.25 + 1.5 = 1.875 \]
\[\sigma^2 = Var(X) = E[(X - \mu)^2] = \sum (x - \mu)^2 p(x) \]
\[= (0 - 1.875)^2(0.25) + (1 - 1.875)^2(0.125) + (2 - 1.875)^2(0.125) + (3 - 1.875)^2(0.5) \approx 1.609 \]

#11: Want the largest \(k \) for which the ratio is increasing.

\[
\text{ratio} = \frac{P(X = k)}{P(X = k - 1)} = \frac{\binom{n}{k} p^k (1-p)^{n-k}}{\binom{n}{k-1} p^{k-1} (1-p)^{n-(k-1)}} = \frac{n!}{k!(n-k)!} \frac{p^k (1-p)^{n-k}}{p^{k-1} (1-p)^{n-(k-1)}} = \frac{n!}{(k-1)!(n-k+1)!} \frac{p^{k-1} (1-p)^{n-(k-1)}}{p^{k-1} (1-p)^{n-(k-1)}} = \frac{1}{k} \frac{p}{(1-p)} = \frac{(n-k+1)p}{k(1-p)} > 1
\]

\[
\Rightarrow (n-k+1)p > k(1-p) \quad \Rightarrow \quad np - kp + p > k - kp \quad \Rightarrow \quad np + p > k
\]

So, the largest integer less than \(np + p \)
Chapter 4: #45a
E(Z)=E(\alpha X+(1-\alpha)Y)=\alpha E(X)+(1-\alpha)E(Y)=\alpha \mu+(1-\alpha)\mu=\mu

b: Var(Z)=Var(\alpha X+(1-\alpha)Y)=\alpha^2 Var(X)+(1-\alpha)^2 Var(Y)=\alpha^2 \sigma_X^2+(1-\alpha)^2 \sigma_Y^2

Now we need to take the derivative and set it equal to zero to find the extrema:

$$\frac{\partial \text{Var}(Z)}{\partial \alpha} = 2\alpha \sigma_X^2 + 2(1-\alpha)(-1)\sigma_Y^2 = 2\alpha \sigma_X^2 + 2\alpha \sigma_Y^2 - 2\sigma_Y^2 = 0 \quad \Rightarrow \quad \alpha = \frac{\sigma_Y^2}{\sigma_X^2 + \sigma_Y^2}$$

To verify it’s a minima we need the second derivative to be positive:

$$\frac{\partial^2 \text{Var}(Z)}{\partial \alpha^2} = 2\sigma_X^2 + 2\sigma_Y^2 > 0$$

We should also check the endpoint values of 0 and 1. Var(Z) at \alpha=0 is \sigma_Y^2, Var(Z) at \alpha=1 is \sigma_X^2. The Var(Z) at the value we found above is \(\frac{\sigma_Y^2 \sigma_X^2}{\sigma_X^2 + \sigma_Y^2}\) which is less than either \sigma_X^2 or \sigma_Y^2.

c: Var((X+Y)/2) = 0.25 \sigma_X^2 + 0.25 \sigma_Y^2

\((1/4)\sigma_X^2 + (1/4)\sigma_Y^2 < \sigma_Y^2 \rightarrow (1/4)\sigma_X^2 < (3/4)\sigma_Y^2 \rightarrow \sigma_X^2 < 3\sigma_Y^2\)

Similarly \ \sigma_Y^2 < 3\sigma_X^2.

So it is better to use the average when \ \sigma_X^2 < 3\sigma_Y^2 \ and \ \sigma_Y^2 < 3\sigma_X^2.

Homework 7 – Due 9/21

Chapter 2: #31a
First we need to convert to the appropriate amount of time \(\lambda = 2/\text{hour} = 1/3 / 10\text{ minutes}.
Secondly notice that P[rings]=P[at least one occurrence]=1-P[no occurrences]=1-(1/3)^0 e^{-1/3/0!} \approx 1-.7165=0.2835

Also, a: The population size 4,000,000 is very large, and the sample size is very small relative to it, so that the binomial and hypergeometric distributions will be very similar.

b: \(P[X = 0] = \binom{100}{0} (0.04)^0 (1 - 0.04)^{100-0} = 0.96^{100} \approx 0.0169 = 1.69\% \)

c: This would be the expected value of a geometric distribution = 1/p = 1/0.04 = 25.

d: This is a negative binomial with r=2, so

\(P[X = 10] = \binom{10-1}{2-1} (0.04)^2 (1 - 0.04)^{10-2} = 9 \cdot 0.04^2 \cdot 0.96^8 \approx 0.0104 = 1.04\% \)