STAT 702/J702 – Fall 2006 - Take Home Exam 2
Due by 3:45pm, Thursday, November 9th

Answer 10 of the 11 following questions (I will grade your best 10). Show all of your work for credit. There are no “trick” questions, but some are decidedly easier than others or use methods I pointed out several times in class. You may not consult with anyone else on these problems; please contact me if you have any questions (including calculus advice!)

1) Let X and Y be independent random variables where X is exponential with $\lambda = 3$ and Y is normal with $\mu = 2$ and $\sigma^2 = 9$. Find $E(X+Y)$ and $Var(X+Y)$.

2) Find k such that $f(x) = kx(2-x)$ on $0 < x < 2$ (and is 0 elsewhere) is a p.d.f.

3) Let the random variable X have c.d.f. $F(x) = \frac{1}{2}(1 + x^3)$ on $-1 < x < 1$ (and 0 otherwise). Find $E(X)$ and $Var(X)$.

4) Leaks due to manufacturing defects occur in a brand of hose at a rate of approximately 2 per 500 feet. Name an appropriate distribution and estimate the probability that the first defect will be found in the first 100 feet.

5) Evaluate $\int_{0}^{\infty} x^4 e^{-\pi x} dx$.

6) Let X have a exponential with $\lambda = 1$. Find the c.d.f. and p.d.f for Y = 1 - e^{-X}.

7) Let $f_{XY}(x,y) = \frac{1}{4} + \frac{xy}{16}$ on $-1 < x < 1, -1 < y < 1$ (and be 0 otherwise). Find the conditional distributions of $X|Y$ and $Y|X$. Also, are X and Y independent?

8) Let X and Y be independent chi-square random variables with 1 degree of freedom. (The p.d.f. is on page 61.) Derive the p.d.f. of $Z = X/Y$.

9) In class we showed how to get general formula’s for the p.d.f.’s of $Z = X/Y$ and $Z = X + Y$. Show that if X and Y have joint p.d.f. $f_{XY}(x,y)$ and $Z = X Y$ that $f_Z(z) = \int_{-\infty}^{\infty} f_{XY}(x, z/x) \left| \frac{1}{x} \right| dx$.

10) Let X and Y have joint p.d.f. $f_{XY}(x,y) = 1 + (1-2x)(1-2y)$ on $0 < x < 1, 0 < y < 1$ (and be 0 elsewhere). Find the joint p.d.f. of $U = X+Y$ and $V = X+2Y$.

11) Let X_1, \ldots, X_5 be independent exponential random variables with parameter $\lambda = 1$. Find the p.d.f. for the median $X_{(3)}$.