Today

- Homework Solutions
- Unordered, with replacement
- The Hypergeometric
- Binomial vs. Hypergeometric

H2) Say your chance of making the first was 60%, but that your chance of making the second is 80% if you made the 1st and only 30% if you missed.

Construct a tree diagram. Indicate the probabilities for each branch of the tree, and also identify them symbolically in terms of events A=made 1st shot, and B=made 2nd shot (e.g. P(A U B), etc...).

Use the tree to find the P(made both), P(made exactly 1), and P(missed both).
Take Two

<table>
<thead>
<tr>
<th>Number of Samples of Size r</th>
<th>With Replacement</th>
<th>Without Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered</td>
<td>n^r</td>
<td>$\frac{n!}{(n-r)!}$</td>
</tr>
<tr>
<td>Unordered</td>
<td>$\frac{(n-1+r)!}{r!(n-1)!}$</td>
<td>$\frac{n!}{r!(n-r)!}$</td>
</tr>
</tbody>
</table>

Last time… Binomial Experiment
1. n identical trials
2. Each trial has only two possible outcomes (“Success” or “Failure”)
3. Probability of “Success” is a constant p for every trial
4. Trials are independent

$$P[k \text{ successes in } n \text{ trials}] = \binom{n}{k} p^k (1-p)^{n-k}$$

Why doesn’t this work for opinion polls?
Hypergeometric Experiment
1. Population of size \(n \)
2. \(r \) are “successes” and \(n-r \) are “failures”
3. A random sample of size \(m \) is taken without replacement

Example) An assembly line produced \(n = 2000 \) parts, of which \(r = 40 \) were defective. (Note that this is a 0.02 defective rate).

A random sample of size \(m = 20 \) is chosen. What is the probability that exactly 10 of these 20 will be defectives?

The first “trick” is to realize that, since we are taking a random sample, every possible sample of size 20 has the same probability. (e.g. all of the sample points have the same probability.)

In the binomial case we figured out the probability of each sample point and then multiplied that by the number of sample points in our event.
Another way of calculating the probability of an event when all sample points are equally probable is:

\[P(A) = \frac{\text{number of sample points in } A}{\text{total number of sample points}} \]

In general, for a population of size \(n \) with \(k \) successes and a sample of size \(m \) we get:

\[P[k \text{ successes out of } m] = \binom{r}{k} \frac{\binom{n-r}{m-k}}{\binom{n}{m}} \]

Example – Capture/Recapture)

Goal: To estimate the size \(n \) of a population.

Method: “Randomly” capture, tag, and release \(r \) of them. Then “randomly capture” \(m \) of them and see how many are tagged.
Now the probability of a certain number being captured will be hypergeometric!

\[P[k \text{ tagged out of } m] = \frac{\binom{r}{k} \binom{n-r}{m-k}}{\binom{n}{m}} \]

The problem is that we know \(r, k, \) and \(m, \) but we are looking for \(n! \)

Since we can’t find \(n \) exactly, we will attempt to estimate it by choosing the value of \(n \) that “seems most likely”. That is, what value of \(n \) would give us the largest probability of observing the \(k \) that we did.

Mathematically then, we need to find the \(n \) that maximizes

\[L_n = P[k \text{ tagged out of } m] = \frac{\binom{r}{k} \binom{n-r}{m-k}}{\binom{n}{m}} \]

If \(n \) was continuous we could try taking the derivative with respect to \(n \) and setting it equal to zero.
We will use a similar logic here and take the ratio L_n / L_{n-1}.

So n should be the greatest integer not exceeding $\frac{mr}{k}$.

So if $r=10$, $m=20$, and $k=4$ we estimate n to be 50.

When are the binomial and hypergeometric similar?

What do you lose if you sample with replacement instead? (e.g. why not always use binomial?)