Today

• Homework
• Order Statistics (cont.)
• More on Expected Values

Ch 3: #38) Let T_1 and T_2 be independent exponentials with parameters λ_1 and λ_2. Find the density function of T_1 and T_2.
Problem 2) Let \(X \) and \(Y \) be independent uniform \([0,1]\) random variables.

Consider the (seemingly ugly) transformations:

\[
U = \sqrt{-2 \ln(X)} \cos(2\pi Y) \\
V = \sqrt{-2 \ln(X)} \sin(2\pi Y)
\]

a) Demonstrate that:

\[
X = \exp\left(-\frac{U^2 + V^2}{2}\right) \\
Y = \frac{1}{2\pi} \arctan \frac{V}{U}
\]

b) Use the transformation of variable formula to find the joint distribution of \(U \) and \(V \), and remember to specify where it is defined.

c) Identify the joint distribution by name.
3.7 – Order Statistics (cont.)

Let X_1, X_2, \ldots, X_n be independent random variables with the same CDF $F_X(x)$.

The values in order from lowest to smallest are the order statistics $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$.

The marginal p.d.f. for any of the order statistics is:

$$f_{X_{(k)}}(x_{(k)}) = \frac{n!}{(k-1)!(n-k)!} f_X(x_{(k)})$$

$$\cdot F_{k-1}(x_{(k)})[1 - F_X(x_{(k)})]^{n-k}$$

The joint p.d.f. of all of the order statistics is:

$$f_{X_{(1)}, \ldots, X_{(n)}}(x_{(1)}, \ldots, x_{(n)}) = n! f(x_{(1)}) \cdots f(x_{(n)})$$
One way to find the joint p.d.f. of a pair of order statistics would be to integrate out the \(n-2 \) you are not concerned with.

Another way is to use what the text calls “a differential argument” (Theorem A on 101 uses this to prove the result in the hmwk.)

Say we want the joint p.d.f. of \(X_{(i)} \) and \(X_{(j)} \) where \(i < j \).

The trick to getting the joint p.d.f. directly is try to let our insights into discrete distributions apply to continuous random variables.

In particular we will imagine that:

\[
f(x,y) = P[x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy]
\]

\[
f(x) = P[x ≤ X ≤ x + dx]
\]

And so...

\[
f_{X_{(i)},X_{(j)}}(x_{(i)},x_{(j)}) = \\
\frac{n!}{(i-1)!(j-i-1)!(n-j)!} \cdot F_{X}^{i-1}(x_{(i)}) \cdot \left[F_{X}(x_{(j)}) - F_{X}(x_{(i)}) \right]^{j-i-1} \cdot \left[1 - F_{X}(x_{(j)}) \right]^{n-j} \cdot f_{X}(x_{(i)}) f_{X}(x_{(j)})
\]
Chapter 4 Revisited: More on Expected Values

Recall that

\[E(X) = \sum x p(x) \quad \Rightarrow \quad \int_{-\infty}^{+\infty} x f(x) dx \]
\[Var(X) = \sum (x - \mu)^2 p(x) \quad \Rightarrow \quad \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx \]

For constants a and b,

\[E(a + bX) = a + b E(X) \]
\[Var(a + bX) = b^2 Var(X) \]

Let \(X_1, X_2, \ldots X_n \) be mutually independent random variables, then:

\[\mu_{\Sigma X} = E(\Sigma X_i) = \Sigma_i E(X_i) = \Sigma_i \mu_i \]
\[\sigma_{\Sigma X}^2 = Var(\Sigma X_i) = \Sigma_i Var(X_i) = \Sigma \sigma_i^2 \]
What if the X_i are not independent?

First, if the X_i have joint p.d.f $f(x_1,\ldots,x_n)$ and $Y=g(x_1,\ldots,x_n)$ then

$$E(Y) = \int \cdots \int g(x_1,\ldots,x_n) f(x_1,\ldots,x_n) dx_1 \cdots dx_n$$

Provided the integral converges with $|g|$.

Now consider $Y = a + b \sum_{i=1}^{n} X_i$

and finding $E(Y)$ and $\text{Var}(Y)$.