1) Consider a random sample \(x_1, \ldots, x_n\) from a distribution with pdf
\[
f(x) = (\theta + 1)(1-x)^\theta \quad \text{for} \ 0 < x < 1
\]

a) Find the MoM estimator for \(\theta\).

\[
\mu = \int x(\theta + 1)(1-x)^\theta \, dx \quad \text{Let } y=1-x, \text{ so that } x=1-y, \text{ and } dx=-dy
\]

\[
= -\int_{x=0}^{x=1} (1-y)(\theta + 1)y^\theta \, dy = -(\theta + 1) \int_{x=0}^{y=1} (y^\theta - y^{\theta+1}) \, dy = -(\theta + 1)(\frac{y^{\theta+1}}{\theta + 1} - \frac{y^{\theta+2}}{\theta + 2})_{y=0}^{y=1} = (\theta + 1)(\frac{1}{\theta + 1} - \frac{1}{\theta + 2}) = \frac{1}{(\theta + 2)}
\]

Or, notice that this is a beta distribution with \(\alpha=1\) and \(\beta=\theta+1\).

So \(\bar{x} = \frac{1}{\hat{\theta}_{mom} + 2} \Rightarrow \hat{\theta}_{mom} + 2 = \frac{1}{\bar{x}} \Rightarrow \hat{\theta}_{mom} = \frac{1}{\bar{x}} - 2\)

b) Find the MLE estimator for \(\theta\).

\[
\text{lik}(\theta | x_1, \ldots, x_n) = f(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} f(x_i | \theta) = \prod_{i=1}^{n} (\theta + 1)(1-x_i)^\theta
\]

\[
\log \text{lik}(\theta | x_1, \ldots, x_n) = \sum_{i=1}^{n} [\log(\theta + 1) + \theta \log(1-x_i)] = n \log(\theta + 1) + \theta \sum_{i=1}^{n} \log(1-x_i)
\]

\[
\frac{\partial}{\partial \theta} \log \text{lik}(\theta | x_1, \ldots, x_n) = \frac{n}{\theta + 1} + \sum_{i=1}^{n} \log(1-x_i) = 0
\]

\(\Rightarrow \hat{\theta}_{mle} = \frac{n}{\sum_{i=1}^{n} \log(1-x_i)} - 1\)
2) In many cases a process will have a minimum value > 0 so that using a distribution like the exponential, chi-squared, F, or gamma doesn’t make much sense. In this case the distribution can be shifted to the right. Consider the shifted exponential with pdf

\[f(x) = \frac{1}{\theta} e^{-\frac{(x-a)}{\theta}} \text{ for } x>a \]

and the data set 16.2, 12.4, 6.0, 8.4, 6.8, 9.1, 6.6, 6.0, 10.7, 5.8.

a) Show that the mean of the shifted exponential is \(\theta + a \) and the variance is \(\theta^2 \).

\[
\mu = \int_{a}^{\infty} x f(x) dx = \int_{a}^{\infty} \frac{x}{\theta} e^{-\frac{(x-a)}{\theta}} dx \quad \text{let } y=x-a \text{ so that } x=y+a \text{ and } dx=dy \text{ and we get}
\]

\[
= \int_{x=a}^{\infty} (y+a) \frac{1}{\theta} e^{-\frac{y}{\theta}} dy = a + \int_{y=0}^{\infty} y \frac{1}{\theta} e^{-\frac{y}{\theta}} dy = a + \theta \text{ because } y \text{ is just exponential.}
\]

\[
\sigma^2 = \int_{a}^{\infty} (x-(\theta + a))^2 f(x) dx = \int_{a}^{\infty} (x+\theta - (\theta + a))^2 \frac{1}{\theta} e^{-\frac{(x-a)}{\theta}} dx \text{ again let } y=x-a
\]

\[
= \int_{x=a}^{\infty} (y-\theta)^2 \frac{1}{\theta} e^{-\frac{y}{\theta}} dy = \theta^2 \text{ because } y \text{ is again just exponential.}
\]

b) Find the form of the MoM estimators for \(a \) and \(\theta \).

\[
\bar{x} = \hat{a}_{mom} + \hat{\theta}_{mom}
\]

\[
\hat{\sigma}^2 = \hat{\theta}_{mom}^2 \Rightarrow \hat{\theta}_{mom} = \hat{\sigma} \Rightarrow \hat{a}_{mom} = \bar{x} - \hat{\sigma}
\]

In this case we get \(\hat{\theta}_{mom} = \hat{\sigma} = 3.242 \) and \(\hat{a}_{mom} = \bar{x} - \hat{\sigma} = 8.8 - 3.242 = 5.558 \)

c) Find the form of the MLE for \(a \) and \(\theta \). (Note that when you take the derivative with respect to \(a \) that it can never equal zero, so the maximum must happen at one of the end-points. Also note that the bigger \(a \) is the bigger the log-likelihood is. Based on what you know about the pdf, what is the biggest value that \(a \) can have?)

\[
lik(a, \theta \mid x_1, \ldots, x_n) = f(x_1, \ldots, x_n \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{(x_i-a)}{\theta}}
\]

\[
\log lik(a, \theta \mid x_1, \ldots, x_n) = \sum_{i=1}^{n} [-\log \theta - \frac{(x_i-a)}{\theta}] = -n \log \theta - \frac{n}{\theta} \sum_{i=1}^{n} x_i + \frac{na}{\theta}
\]

\[
\frac{\partial}{\partial a} \log lik(a, \theta \mid x_1, \ldots, x_n) = \frac{n}{\theta} \text{ which is never 0! So must be a boundary. The biggest it can be is the smallest observed } x!
\]

\[
\frac{\partial}{\partial \theta} \log lik(a, \theta \mid x_1, \ldots, x_n) = -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} x_i}{\theta^2} - \frac{na}{\theta^2} = 0 \Rightarrow n \theta = \sum_{i=1}^{n} x_i - na \Rightarrow \theta = \bar{x} - a
\]

So we get that \(\hat{a}_{mle} = x_{(1)} \) and \(\hat{\theta}_{mle} = \bar{x} - x_{(1)} \) which in this case are \(\hat{a}_{mle} = 5.8 \) and \(\hat{\theta}_{mle} = 8.8 - 5.8 = 3 \)
3) Consider the Cauchy distribution centered at θ, that has pdf

$$f(x) = \frac{1}{\pi(1 + (x - \theta)^2)}$$

for $-\infty < x < \infty$

a) Why can’t there be a MoM estimator for θ?

The Cauchy distribution doesn’t have any moments!

b) What formula must the MLE satisfy?

$$lik(\theta | x_1, ..., x_n) = f(x_1, ..., x_n | \theta) = \prod_{i=1}^{n} f(x_i | \theta) = \prod_{i=1}^{n} \frac{1}{\pi(1 + (x_i - \theta)^2)}$$

$$\log lik(\theta | x_1, ..., x_n) = \sum_{i=1}^{n} \left[-\log \pi - \log(1 + (x_i - \theta)^2) \right] = -n \log \pi - \sum_{i=1}^{n} \log(1 + (x_i - \theta)^2)$$

$$\frac{\partial}{\partial \theta} \log lik(\theta | x_1, ..., x_n) = -\sum_{i=1}^{n} \frac{2(x_i - \theta)}{1 + (x_i - \theta)^2} = 0 \Rightarrow \hat{\theta}_{mle} \text{ must solve } \sum_{i=1}^{n} \frac{(x_i - \theta)}{1 + (x_i - \theta)^2} = 0$$

c) Use R to find the estimate of θ based on the sample –0.6, 4.2, 1.1, -4.3, -10.3, 1.6, 4.8, 30.9, 0.4, 1.5.

```r
x<-c(-0.6, 4.2, 1.1, -4.3, -10.3, 1.6, 4.8, 30.9, 0.4, 1.5)

cauchynloglik<-function(theta, data){
  n<-length(data)
  x<-data
  -(n*log(pi)-sum(log(1+(x-theta)^2)))
}

optim(0,cauchynloglik,method="BFGS",data=x)

$par
[1] 1.171398
```