Today

• Basics of Hypothesis Testing
 Continued

9.2 Neyman-Pearson Paradigm
Let $X = (X_1, ..., X_n)$ denote a sample from population $f(x|\theta)$. Decide on H_0 vs. H_A based on the sample.

A decision on whether or not to reject H_0 in favor of H_A is made on the basis of a statistic

$$T = T(X) = T(X_1, ..., X_n).$$
The set of values of T for which H_0 is accepted is called the acceptance region and the set of values of T for which H_0 is rejected is the rejection region of the test.

Two kinds of error may occur:

1. H_0 is rejected when it is true: Type I error.

 P(type I error) = α

 $\alpha = P(T \in$ rejection region $| H_0$ true).

 If H_0 is simple, α is called the significance level of the test.

2. H_0 is accepted when it is false: Type II error.

 P(type II error) = β

 $\beta = P(T \in$ acceptance region $| H_0$ false)

 If H_A is composite, β depends on which member of H_A is the true pdf.
Power of the test = \(P(H_0 \text{ is rejected when false}) \)
= 1 - \(P(H_0 \text{ is accepted | } H_0 \text{ false}) \)
= 1 - \(\beta \).

Ideally, we would want \(\alpha = \beta = 0 \), but this not possible since the decision is based on data.

Example:
Consider testing
\(H_0: p = 0.5 \)
vs. \(H_A: p = 0.6 \)
for a binomial sample of size \(n = 10 \).

P-value The p-value is the probability of observing a test statistic at least as extreme as the one observed if the null hypothesis is true.

The null hypothesis is rejected when p-value is \(\leq \alpha \). It is the smallest \(\alpha \) for which \(H_0 \) would be rejected.
Example 2:

Consider testing
$H_0: \ p=0.5$
vs. $H_A: \ p>0.5$
for a binomial sample of size $n=10$.

For a composite test the significance level α is the maximum (supremum) of the probabilities of a Type I error over all the possible alternatives.