Today

• 9.3: Neyman-Pearson Lemma

• 9.4: Tests and CIs

Neyman-Pearson Lemma: If the likelihood ratio test that rejects H_0 in favor of H_A when

$$\lambda = \frac{f_A(x)}{f_0(x)} \leq c,$$

has significance level α, then any other test having significance level at most α has power less than or equal to the power of the likelihood ratio test. (i.e., the LRT has highest power among tests with significance level α).
Example: Consider a sample of size \(n \) from a normal distribution with variance 1.

Test \(H_0: \mu = 0 \) vs. \(H_A: \mu = 1 \) at \(\alpha = 0.05 \).

In some cases we can also show that the test is uniformly most powerful for a composite alternate hypotheses.

This happens if we can show it is most powerful for every simple alternate in \(H_A \).

Consider testing

Test \(H_0: \mu = 0 \) vs. \(H_A: \mu > 0 \)

and

Test \(H_0: \mu = 0 \) vs. \(H_A: \mu \neq 0 \)
Example 2: Consider a binomial distribution with \(n=8 \) and unknown \(p \). It is desired to test \(H_0: p=0.2 \) versus \(H_A: p=0.4 \).

Confidence Intervals and Tests

There is a duality between confidence intervals and hypothesis tests. A confidence interval is found by “inverting” a two-sided test (and vice-versa).

Theorem A: Suppose there is a test of level \(\alpha \) for \(H_0: \theta = \theta_0 \), and let \(A(\theta_0) \)=acceptance region

Then the set \(C=\{\theta: X \in A(\theta)\} \) is a \(100(1-\alpha)\% \) confidence region for \(\theta \).
Theorem B: Let \(C(X) \) be a \(100(1- \alpha) \% \) confidence region for \(\theta_0 \).

Then \(A(\theta_0) = \{ X: \theta_0 \in C(X) \} \) is an acceptance region for a test of level \(\alpha \) for \(H_0: \theta = \theta_0 \).