Today

Some Properties of Estimators

• Efficiency
• Cramer-Rao Inequality
• Sufficiency
• Factorization Theorem
• Rao-Blackwell

8.6 Comparing Estimates and Tests

One of the standard tools for evaluating an estimate is the mean squared error:

\[\text{MSE}(\hat{\theta}) = E(\hat{\theta} - \theta_0)^2 \]
\[= \text{Var}(\hat{\theta}) + [E(\hat{\theta}) - \theta_0]^2 \]
If two estimators are unbiased, then the efficiency of $\hat{\theta}$ relative to $\tilde{\theta}$ is

$$\text{eff}(\hat{\theta}, \tilde{\theta}) = \frac{\text{var}(\tilde{\theta})}{\text{var}(\hat{\theta})}$$

For two tests T_1 and T_2 of the same H_0 and H_A with the same α-level, the relative efficiency of T_1 to T_1 is the ratio n_2/n_1 required so that they have the same power.

The asymptotic relative efficiency of the MWW to the t-test is:
- 0.955 if the populations are normal
- 1.0 if the populations are uniform
- 1.5 if the populations are double-exp.
- 0.864 to infinity in general assuming the populations differ only by location.
The asymptotic relative efficiency of the MWW to the median test is:
- 1.5 if the populations are normal
- 3.0 if the populations are uniform
- 0.75 if the populations are double-exp.
assuming the populations differ only by location.

Cramer-Rao Inequality
Let X_1, \ldots, X_n be i.i.d. with density $f(x|\theta)$, and T be an unbiased estimate of θ. Then under appropriate smoothness assumptions on f
$$Var(T) \geq \frac{1}{nI(\theta)}$$

Recall that under smoothness conditions that the $1/nI(\theta)$ is the asymptotic variance of the MLE!

So, why isn't the MLE always best?
8.7 Sufficiency One of the key concepts in advanced mathematical statistics is that of sufficiency. Does a statistic summarize all of the information in the data about a parameter, or do we lose something by summarizing.

Defn A statistic \(T(X_1, \ldots X_n) \) is sufficient for \(\theta \) if the conditional distribution of \(X_1, \ldots X_n \) given \(T=t \) does not depend on \(\theta \) for any value of \(t \).

Example: Consider a Poisson Distribution with parameter \(\lambda \) and a sample size of 2.

A) Consider \(T=X_1 + X_2 \)

B) Consider \(T=X_1 + 2X_2 \)
The Factorization Theorem
A necessary and sufficient condition for T to be sufficient for θ is that the joint p.d.f. factors in the form:
$$f(x_1, \ldots, x_n | \theta) = g(T(x_1, \ldots, x_n), \theta)h(x_1, \ldots, x_n)$$

Rao-Blackwell Theorem
Let $\hat{\theta}$ be an estimator of θ with $E(\hat{\theta})^2 < \infty$ for all θ. If T is sufficient for θ then $\tilde{\theta} = E(\hat{\theta} | T)$ satisfies
$$E(\tilde{\theta} - \theta)^2 \leq E(\hat{\theta} - \theta)^2$$
for all θ.