Today

Properties of Estimators cont.

- Sufficiency
- Factorization Theorem
- Rao-Blackwell
- And Beyond!

8.7 Sufficiency One of the key concepts in advanced mathematical statistics is that of sufficiency. Does a statistic summarize all of the information in the data about a parameter, or do we lose something by summarizing.
Defn A statistic $T(X_1, \ldots X_n)$ is sufficient for θ if the conditional distribution of $X_1, \ldots X_n$ given $T=t$ does not depend on θ for any value of t.

Example 1: Poisson Distribution

Example 2: Normal Distribution
The Factorization Theorem
A necessary and sufficient condition for T to be sufficient for θ is that the joint p.d.f. factors in the form:

$$f(x_1, \ldots, x_n \mid \theta) = g(T(x_1, \ldots, x_n), \theta)h(x_1, \ldots, x_n)$$

Rao-Blackwell Theorem
Let $\hat{\theta}$ be an estimator of θ with $E(\hat{\theta})^2 < \infty$ for all θ. If T is sufficient for q then $\bar{\theta} = E(\hat{\theta} \mid T)$ satisfies

$$E(\bar{\theta} - \theta)^2 \leq E(\hat{\theta} - \theta)^2$$

Example 3: Consider trying to estimate λ for a Poisson distribution using only X_1.
Lehmann-Scheffe Theorem
Let \(\hat{\theta} \) be an unbiased estimator of \(\theta \) with \(\mathbb{E}(\hat{\theta})^2 < \infty \) for all \(\theta \). If \(T \) is complete sufficient for \(\theta \) then \(\theta = E(\hat{\theta} \mid T) \) is the uniformly minimum variance unbiased estimate (UMVUE) of \(\theta \).

Complete? A statistic \(T \) is complete for \(\theta \) if the zero function is the only function that satisfies:
\[
E_\theta[g(T)] = 0 \text{ for all } \theta
\]

However we have a result similar to the factorization theorem for “exponential families”.
\[
f(x \mid \theta) = \exp\left[\sum_{i=1}^{k} T_i(x)c_i(\theta) + d(\theta) + S(x)\right]
\]
where \(\theta = (\theta_1, \ldots, \theta_k) \)
Under appropriate regularity conditions the vector of \(T \)'s is complete sufficient.