STAT 703/J703 April 24th, 2007

-Lecture 27-

Instructor: Brian Habing Department of Statistics LeConte 203 Telephone: 803-777-3578

E-mail: habing@stat.sc.edu

Concepts for Bayes...

1) A player recently promoted to the major leagues has had 1 hit in his first 25 at bats. What do you estimate his batting average to be? (Batting average = % of times a hit is gotten in an at bat).

STAT 703/J703 B.Habing Univ. of SC

2) Consider your answer in 1. You are then told that the batting averages of professional major league players has a mean of around 0.266 and a standard deviation of around 0.026. What do you think about your estimate in 1 now?

Bayesian Statistics

Classical Setup

Bayesian Setup

 θ is an unknown constant

⊕is an unknown random variable, unobservable with pdf $g(\underline{\theta})$

 $X_1,...,X_n$ are observed from $f(x|\underline{\theta})$

 $X_1,...,X_n$ are observed from the conditional pdf $f(x|\underline{\theta})$

STAT 703/J703 B.Habing Univ. of SC

A Bayesian Statistical Model:

- 1. An observed sample $X_1, ..., X_n$ $(X_1,...,X_n)=X \in X$, the <u>data space</u>.
- 2. An unobserved random vector $\underline{\Theta}$ of parameters, $\underline{\Theta} \in \Omega$, the <u>parameter</u> space.
- 3. The conditional density of $X_1,...,X_n$, given $\underline{\Theta} = \underline{\theta}$, $f(\underline{x} | \underline{\theta})$.
- 4. The (marginal) pdf of $\underline{\Theta}$, $g(\underline{\theta})$, the prior distribution of Θ .

STAT 703/J703 B.Habing Univ. of SC

Bayes Rule can be written

$$h(\theta \mid x) = \frac{f(x \mid \theta)g(\theta)}{\int f(x \mid \theta)g(\theta)d\theta}$$

Say we knew $f(x|\theta)$ and $g(\theta)$ and wanted to find the maximum likelihood estimate of $h(\theta | x)$. Why can we just find the value of θ that maximizes $f(x|\theta) g(\theta)$ and not worry about the bottom integral?

STAT 703/J703 B.Habing Univ. of SC

Hence, inferences are described in terms of the posterior distribution of $\underline{\Theta}$, the conditional pdf of $\underline{\Theta}$, given $\underline{X} = (x_1, ..., x_n)$, $h(\underline{\theta}|\mathbf{x})$. (Interpretation of posterior).

We consider Bayesian point and interval estimators as well as Bayesian tests (decisions). The point estimate is given by a Bayes rule.

STAT 703/J703 B.Habing Univ. of SC

Example - Sample $X_1,...,X_n$ from a normal population whose variance is 1 and mean μ is a value of a random variable

$$X_i | M = \mu \sim N(\mu, 1),$$

$$f(x \mid \mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2}}, \mu \in R$$

Suppose M ~ $N(\alpha, \tau^2)$ as the prior pdf.

STAT 703/J703 B.Habing Univ. of SC

The "Bayesian confidence interval" is called a credibility interval:

$$(\theta_0, \theta_1)$$
 where $\int_{\theta_1}^{\theta_2} h(\theta \mid x) d\theta = 1 - \alpha$

"Bayesian hypothesis testing" depends on a loss function	
evaluated for competing hypotheses.	
STAT 703/J703 B.Habing Univ. of SC	