STAT 201: Elementary Statistics Session 13 \& 14, Spring 2015 Practice Set for Exam III

Instructor: Haigang Liu

1. (20 points) The top free throw shooters in NBA usually have about 90% chance of making any given free throw. Suppose one player, say Kevin Durant, shot 10 free throws in a game. Answer the following questions.
a) Let X be the number of shots that Kevin made. What assumption should be checked before claiming that X has a binomial distribution?
b) Suppose X has a binomial distribution. Clarify n and p.
c) Find the probability that he made at least 9 free throws.
2. (15 points) State and prove the empirical rule with the help of Z-score table.
3. (15 points) The wingspan of recently cloned monarch butterflies follows a normal distribution with mean 9 inches and standard deviation 0.75 inches. Answer the following questions.
a) What is the proportion of butterflies has a wingspan less than 8 inches?
b) What is the proportion of butterflies has a wingspan wider than 10 inches?
c) What is the proportion of butterflies has a wingspan between 9 and 11 inches?
4. (20 points) Construct the sampling distribution of the sample proportion of heads obtained in the experiment of flipping a coin three times. Note this is not a fair coin. The probability of observing a head is 0.7 .
5. (15 points) In the 2008 General Social Survey, respondents were asked if they favored or opposed the death penalty for people convicted of murder. The results are given below:

Sample	X	N	Sample p	95% CI
1	1263	1902	0.664038	$(0.642811,0.685265)$

Here X refers to the number of participants who say yes, and 95% CI is the 95% confidence interval. Answer the following questions.
a) Show how the sample p is obtained
b) Calculate the standard error of sample p and show how the 95% CI is obtained.
c) Interpret the 95% confidence interval.
6. (15 points) Answer the following questions.
a) Suppose $X \sim N\left(\mu, \sigma^{2}\right)$, which is a normal distribution with mean μ and variance σ^{2}, what is the sampling distribution of \bar{X} ?
b) Suppose we have two populations, one follows $\operatorname{Binomial}(\mathrm{n}, \mathrm{p}=0.5)$ and the other follows Binomial($\mathrm{n}, \mathrm{p}=0.9$). Which one converges faster to normal? Hint: first figure out what "faster" means in the context of this problem.
c) State, in plain English, the Central Limit Theorem.

