GROUND RULES:

- This exam contains 5 questions; each question is worth 10 points. The maximum number of points on this exam is 50 .
- Print your name at the top of this page in the upper right hand corner.
- This is a closed-book and closed-notes exam. You may use a calculator if you wish.
- SHOW ALL OF YOUR WORK AND EXPLAIN ALL OF YOUR REASONING!!! Correct answers with no explanation receive almost no credit.
- Summary information on the discrete and continuous distributions is provided.
- Any discussion or otherwise inappropriate communication between examinees, as well as the appearance of any unnecessary material, will be dealt with severely.
- You have 80 minutes to complete this exam. GOOD LUCK!

HONOR PLEDGE FOR THIS EXAM:

After you have finished the exam, please read the following statement and sign your name below it.

I promise that I did not discuss any aspect of this exam with anyone other than the instructor, that I neither gave nor received any unauthorized assistance on this exam, and that the work presented herein is entirely my own.

1. Suppose that $Y \sim \operatorname{gamma}(\alpha, \beta)$. Define

$$
U=g(Y)=Y^{2}-1
$$

(a) Find the probability density function (pdf) of U. Make sure to note the support. (b) Find $E(U)$.
2. For a certain insurance policy, actuaries model the claim amount Y (measured in thousands of dollars) using a Pareto distribution with pdf

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\frac{24}{y^{4}}, & y>2 \\
0, & \text { otherwise }
\end{array}\right.
$$

An iid sample $Y_{1}, Y_{2}, \ldots, Y_{5}$ of $n=5$ claims is observed.
(a) Find the probability that the maximum claim exceeds $\$ 4,000$; i.e., find $P\left(Y_{(5)}>4\right)$.
(b) Find the expected value of the minimum claim amount.
3. Suppose that Y_{1} and Y_{2} are random variables with joint pdf

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cl}
4 y_{1} y_{2}, & 0<y_{1}<1,0<y_{2}<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Find the pdf of $U=Y_{1}^{2} Y_{2}$. Advice: Do not try to use mgfs.
(b) Find $E(U)$.
4. Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample of exponential $(\beta=1)$ random variables. Define the statistics

$$
\begin{aligned}
U_{n} & =2\left(Y_{1}+Y_{2}+\cdots+Y_{n}\right) \\
V_{n} & =\sqrt{n}(\bar{Y}-1)
\end{aligned}
$$

(a) Derive the moment generating function (mgf) of U_{n}. What is the distribution of U_{n} ?
(b) Show that the mgf of V_{n}, for $t<\sqrt{n}$, is

$$
m_{V_{n}}(t)=\left\{e^{t / \sqrt{n}}-(t / \sqrt{n}) e^{t / \sqrt{n}}\right\}^{-n} .
$$

(c) For any $t<\sqrt{n}$, find $\lim _{n \rightarrow \infty} m_{V_{n}}(t)$. Hint: Think about the CLT when you are examining the V_{n} sequence.
5. Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid $\mathcal{N}\left(0, \sigma^{2}\right)$ sample. Let \bar{Y} and S^{2} denote the usual sample mean and sample variance, that is,

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \quad \text { and } \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} .
$$

(a) State the sampling distribution of \bar{Y}.
(b) Find $V\left(S^{2}\right)$.
(c) Define

$$
Q_{1}=\frac{1}{\sigma^{2}}\left[n \bar{Y}^{2}+(n-1) S^{2}\right] \quad \text { and } \quad Q_{2}=\frac{n \bar{Y}^{2}}{S^{2}}
$$

Argue that $Q_{1} \sim \chi^{2}(n)$ and that $Q_{2} \sim F(1, n-1)$. These arguments need not be overly mathematical, but they must be convincing.

