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Joint modeling setting

• Data collected from epidemiologic studies such as clinical trials

or observational cohort studies often include information for an

event time of interest (e.g. survival times) and repeated

measurements of one or more longitudinal processes (e.g.

exposure history) that might be associated with patient

prognosis.

• Tsiatis and Davidian (2004) provide a detailed overview of

statistical methodology for joint longitudinal/survival models

focusing on the Cox (1972) model.

• Used to make inferences for two common study objectives:

1. Trends in the time courses of longitudinal processes.

2. Association between time-dependent variables and event

prognosis.
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Figure 1: Weekly averaged systolic blood pressure over 1400 days for a

hemodialysis patient until death. Quadratic B-spline fit (d = 48 func-

tions on 47 equispaced knots). Q: anything here that signals death?
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Figure 2: Log number of eggs laid on each day by medfly. Q: anything

here that signals death?
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Figure 3: Resistance in µΩ of 8 ATC’s before bond pad failure at

temp=30o C, humidity = 30% and NaCl = 20 µg cm2 (time units =

12 seconds). Q: anything here that signals failure?
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Why Consider Joint Modeling?

• Three alternatives to joint modeling include:

1. Separate analyses for the survival and longitudinal processes.

2. Survival analysis with time-dependent covariates (TDCs)

using LVCF.

3. Two-stage procedures.

• Two-stage procedures are conducted by imputing unobserved TD

variable values by modeling the longitudinal process first and

then using the imputed values in a TDC survival model.

• In our illustration, we compare joint analyses with these

alternative approaches.
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Data Structure

• The joint models we consider combine two linked submodels: a

model for the longitudinal component and a model for the

survival component.

• A longitudinal process, x(·), is measured with error so we observe

y(·) at several time points where

y(t) = x(t) + ε(t).

• A time to event, Ti, that is subject to right censoring is also

observed for each sampled individual. The data for subject i,

i = 1, . . . , n, are denoted by

(Ti, δi,yi, zi, ti).

• We assume independence of data across subjects i, and

noninformative censoring and measurement schedule.
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Examples:

• Log of daily number of eggs yij laid j = 1, 2, 3, . . . by

Mediterranean fruit flies (medflies). Endpoint Ti is death of fly.

• Monthly yij =($debt, $assets) for a firm. Fixed covariates zi

might include type of firm. Endpoint Ti is filing for bankruptcy

(death of firm?).

• (CD4,CD8) counts yij collected sporadically (two correlated

processes) in HIV+ patients. Endpoint Ti is death of patient.

• Weekly systolic (pre) blood pressure of hemodialysis patient

averaged over Monday, Wednesday, and Friday. Endpoint Ti is

death of patient.

• Bond pad resistance yij in µΩ over time, collected sporadically,

although “monitored” every 12 seconds. Fixed covariates zi

humidity and NaCl. Endpoint Ti is component failure.
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Background: Longitudinal component

• Many previous approaches to joint modeling have used mixed

effects models for the observed longitudinal process that are

special cases of the following general structure:

yi(t) = xi(t) + εi(t)

xi(t) = f(t)′γ + g(t)′bi + Ui(t) + zi(t)
′α

εi(t)
iid
∼ N(0, σ2)

– f(t) and g(t) are vectors of known functions of time.

– Ui(t) is a mean-zero stochastic process, for example an

Ornstein-Uhlenbeck process or IOU process.

– The vector of random effects, bi, is typically modeled as

multivariate normal ⊥ of the εi(t)’s and b−i.
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Background: Survival component

• Let xH(t) = {x(s) : s < t} denote the history of the process x(·)

up to time t.

• The majority of applications of joint modeling have used a Cox

PH model for the survival component.

• The longitudinal and survival submodels are linked using one of

the following methods:

– The Cox model includes x(·) as a TD variable, e.g.

h(t|xH(t)) = ex(t)βh0(t)

– The longitudinal and survival components are associated

using correlated stochastic processes: one SP in the

longitudinal component and one in the survival component

(e.g. Henderson et al. 2000).
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Background: Survival component

• For the Cox model, the risk of failure at time t is assumed to

depend on the current value of x, and not on its history.

• Although this assumption may be valid in some cases, a

cumulative effect of biomarkers and/or exposure or treatment

processes will be biologically appropriate in other cases.

• We consider a Bayesian treatment of a model developed by Cox

and Oakes (1984) in which cumulative covariate effects up to

time t influence survival prospects at time t, which will be

biologically consistent in many settings that involve longitudinal

exposures, disease biomarkers, or treatment covariate processes.
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PH may be inappropriate

Say x(t) indicates whether or not someone is currently smoking at

time t, and this individual quits at time t0:

x(t) =







0 t ≥ t0

1 t < t0







.

then

h(t) =







h0(t) t ≥ t0

eβh0(t) t < t0







.

Instantaneous risk of dying immediately jumps back to that of

nonsmoker at time t0. Not realistic, especially if smoking several

packs a day for 20 years.
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Models for survival data

• We consider several survival models focusing on model selection

via predictive performance. In particular:

– Extending the AFT model of Cox and Oakes (1984) to a

Bayesian joint specification.

– Extending the proportional odds rate model of Sundaram

(2006) to a Bayesian joint specification.

– Comparison of competing joint models from a predictive

standpoint.

• We also consider the Cox model in a joint analysis, models that

treat the longitudinal process as a fixed TDC, and two-stage

procedures.

• These methods are illustrated on a data set relating lifetimes of

female fruit flies to daily egg production.
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Models for survival data: AFT

• The AFT model with fixed-time covariates relates the event time

rv T for a subject with covariate x to that for a baseline subject

(i.e. a subject with x = 0) by

T = e−xβT0, T0 ∼ S0

where S0(t) = Pr(T0 > t) is a baseline survival function.

• Parametric approaches specify S0 as, e.g., log-logistic.

• Hanson and Johnson (2002) generalized parametric approaches

to allow for arbitrary S0 that was modeled with a mixture of

(finite) Polya trees (MFPT) prior.

– Here, the prior is S0 ∼
∫

PT (c,Gψ)p(dψ, dc) where c is a

weight parameter associated with the PT and Gψ is a

standard parametric AFT distribution (e.g. log-logistic).
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Models for survival data: COAFT

• Cox and Oakes (1984) proposed a generalization of the AFT

model that accommodates TDCs.

• The COAFT model assumes that an individual with covariate

x(·) uses up their lifetime at a rate of ex(t)β relative to their

counterfactual baseline rate:

T0 =

∫ T

0

ex(s)βds

T0 ∼ S0.

• Tseng et al (2005) considered a semiparametric frequentist joint

model that involved COAFT for the survival component and

developed a Monte Carlo EM algorithm to fit the model, and

bootstrap standard errors of regression coefficients were obtained.
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Models for survival data: COAFT

• The hazard, survival, and density functions under the fixed-time

covariate AFT model generalize to the following forms under the

COAFT model:

AFT COAFT

h(t|x) = exβh0(e
xβt) → h(t|xH(t)) = ex(t)βh0(c̄(t)t)

S(t|x) = S0(e
xβt) → S(t|xH(t)) = S0(c̄(t)t)

f(t|x) = exβf0(e
xβt) → f(t|xH(t)) = ex(t)βf0(c̄(t)t)

where

c̄(t) =
1

t

∫ t

0

ex(s)βds

is an “average acceleration factor” up to time t.
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Models for survival data: PO

• With fixed-time covariates, the proportional odds (PO) model

specifies

1 − S(t|x)

S(t|x)
= exβ

1 − S0(t)

S0(t)
.

• Sundaram (2006) extended this model to allow for TDCs yielding

a POTDC model, which is defined by

d

dt

[

1 − S(t|x(·))

S(t|x(·))

]

= ex(t)β
d

dt

[

1 − S0(t)

S0(t)

]

.

• Model is in terms of odds rate, β difficult to interpret. Need to

talk about relative rate at which odds of dying before t are

increasing.
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Comments

• TDC versions of PH, AFT, and PO reduce to standard PH,

AFT, and PO models when x(t) ≡ x0, a constant.

• When modeling S0, possible to obtain Cox-Snell residuals and

make plots to assess model fit.

• Can add multiple TDCs and fixed covariates as well.

• Omitted Aalen (1980) semiparametric model:

h(t|x(·)) = h0(t) + x(t)β

hard to fit in joint modeling context, very little done here in

either Bayesian or frequentist realms.
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Models for survival data: TDC

In the illustration that follows, the COAFT, PO, and PH models are

considered with x(·)

• treated as a fixed time dependent covariate using LVCF,

• modeled using an expansion of simple basis functions, and

• imputed from fitting smooth expansion.
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Model for longitudinal data

• Generally decided on a case-by-case basis.

• To be consistent with a previous joint analysis of the medfly data

(Tseng et al, 2005), we consider the following structure.

• Where yi = (yi1, . . . , yini
)′ are the ni longitudinal measurements

of subject i at times ti = (ti1, . . . , tini
)′, the hierarchical model

specifies that trajectories satisfy

yij |bi, σ
2 ⊥
∼ N

(

bi1g1(tij) + bi2g2(tij) + · · · + bidgd(tij), σ
2
)

• We assume the individual trajectories are iid from a family of

such curves,

bi|µ,Σ
iid
∼ Nd(µ,Σ).

21



The assumptions on the individual curves

bi|µ,Σ
iid
∼ Nd(µ,Σ).

can be relaxed in two directions.

The trajectories can be functions of fixed covariates (i.e. a multilevel

model), e.g.

bi|B,Σ
iid
∼ Nd(B

′zi,Σ).

The normality assumption can be relaxed, e.g.

bi|G
iid
∼ G, G|µ,Σ ∼ DP (cNd(µ,Σ)).

An example of the former is Brown, Ibrahim, and DeGruttola (2005),

the latter, Brown and Ibrahim (2003). The latter generally has little

effect on LMPL.
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Model fitting

• Let xi(t|bi) = bi1g1(t) + · · · + bidgd(t) denote the latent mean

trajectory of subject i’s longitudinal measurements.

• For joint models, the survival component is specified conditional

on longitudinal processes {xi(·|bi)}
n
i=1

• We allow S0 to be arbitrary and place an MFPT prior (Hanson,

2006) on it with

– log-logistic centering family, i.e. E(S0(t)) = (1 + t1/τe−α/τ )−1,

– collection of branch probabilities XM & weight parameter c.

• Let θ = (α, τ,XM , c).

• A model [Ti|θ, β, xi(·|bi)] is specified as COAFT, PO, or PH,

and longitudinal measurements yi are further modeled according

to yi|bi, σ ∼ Nni
(Xibi, Ini

σ2).
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Model fitting

• Independent priors:

– p(µ,Σ, β, α, τ) ∝ |Σ|−(d+1)/2

– p(σ−2) ∝ 1/σ−2

– c ∼ Γ(ac, bc)

– (Xj,2k−1, Xj,2k) ∼ Dirichlet(cj2, cj2)

• The posterior based on the survival portion, the longitudinal

portion, and the prior is then

p(β, θ,µ,Σ, σ|T,y1:n) =
[

n
∏

i=1

f(Ti|xi(·|bi), θ, β)δiS(Ti|xi(·|bi), θ, β)1−δi

]

×

[

n
∏

i=1

p(yi|bi, σ)p(bi|µ,Σ)

]

p(β, θ,µ,Σ, σ)
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Model fitting

• The full conditional distributions for µ, Σ, and σ−2 are:

Σ−1|b1:n,µ ∼ Wishart



n,

[

n
∑

i=1

(bi − µ)(bi − µ)′

]−1




µ|b1:n,Σ ∼ Nd
(

b̄•,Σ/n
)

σ−2|b1:n ∼ Γ



0.5
n

∑

i=1

ni, 0.5
∑

i,j

(yij − xi(tij |bi))
2





• Metropolis-Hastings steps were used to sample the full

conditionals for the bi’s (updated w/ proposal based on

longitudinal model or random-walk M-H; both gave same

inferences), XM (w/ beta proposals), c (w/ truncated normal

proposal), (α, β, τ) (w/ random walk M-H).
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Comment:

The linear model is one approach to modeling xi(t|bi). Alternatives

include:

• Nonlinear regression models, e.g.

yij =
bi1

1 + bi2b
tij

i3

+ εij = xi(tij |bi) + εij .

• Changepoint models, e.g.

yij = bi1 + bi3(tij − bi2)
+ + εij = xi(tij |bi) + εij .

Here, (t)+ is t if t ≥ 0 and zero otherwise.

However, the linear model includes unpenalized spline models,

wavelet expansions, etc., for fixed d. Penalized spline models can

similarly be fit with special structure on Σ.
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Model choice

• We compare parametric and semiparametric joint analyses to

survival analysis with fixed TDC, and to two-stage models.

• The model selection criterion we use, the log-pseudo marginal

likelihood (LMPL), compares predictive ability of failure time

among competing models:

LPML =
n

∑

i=1

log(CPOi)

where CPOi = p(Ti|T−i,y1:n)

• Although not used in our example, one can also consider an

LPML measure that focuses on both prediction of survival and

the longitudinal trajectory
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Model choice

• We can calculate CPOi from MCMC output because

E
[

1
p(Ti|bi,β,θ)

]

=
∫ p(b1:n,β,θ|T,y1:n)db1:ndβdθ

p(Ti|bi,β,θ)

=
∫ [ � j 6=i

p(Tj |bj ,β,θ)]p(y1:n|b1:n)p(b1:n)p(β,θ)db1:ndβdθ

p(T,y1:n)

= 1/CPOi

where expectation is taken wrt [b1:n, β,θ|T,y1:n] and

p(y1:n|b1:n) =

∫ n
∏

i=1

ni
∏

j=1

p(yij |bi, σ)P (dσ)

p(b1:n) =

∫ n
∏

i=1

p(bi|µ,Σ)P (dµ, dΣ)
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Illustration: Medfly Data

• The data used for illustration came from a study where the

reproductive patterns of 1000 female Mediterranean fruit flies

(referred to as medflies) were obtained by recording the number

of eggs produced each day throughout their lifespans.

• A scientific goal was to examine the association between egg

production patterns and lifetime.

• A frequentist approach was used to analyze these data by Tseng

et al (2005), and like these authors we excluded from our

analyses flies whose lifetime egg production was < 1145.

• This gave a sample size of 251 flies with lifespans ranging from 22

to 99 days, and no censored observations.
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Illustration: Medfly Data

• For joint models we used the longitudinal structure for egg

production that was used by Tseng et al. The response was

ln(yi(t) + 1) with

xi(t|bi) = b1i log(t) + b2i(t− 1)

• For analyses that treated egg production as a fixed TDC, we

used a piecewise constant function.

• For two-stage imputation approaches, we modeled the

longitudinal data separately to obtain an estimated smooth

temporal trend, and then fit survival models treating the

estimated x(·) as a known TDC.
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• LPML statistics comparing modeling approaches:

PO PH CO

raw + parametric −867 −870 −937

raw + MPT −865 −866 −938

imputed + parametric −947 −959 −973

modeled + parametric −947 −959 −973

modeled + MPT −945 −956 −973

• Summary based on LPML criterion:

– Predictively, PO and PH models preferred over CO.

– Survival with TDC using LVCF predictively better than joint

analysis.

– MPT improves predictive performance only slightly compared

to parametric model.
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• Fly 1: fitted trajectory for a “typical” medfly. Similar shapes for

PO, PH, CO, and longitudinal only analyses.
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• Fly 1: predictive survival density, parametric models. Solid is

PO, dashed is PH, and dotted is CO.
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• Fly 2: fitted trajectory for another medfly using PO, PH, CO,

and longitudinal only analyses.
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• Fly 2: Predictive survival densities, semiparametric PO (solid),

PH (dashed) and CO (dotted) analyses using raw trajectories.
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• Fly 2: Predictive survival densities, semiparametric PH analyses

comparing raw trajectories (dashed line) to joint analysis (solid

line).
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Posterior inference for β

PO PH CO

raw + parametric −0.75 −0.65 −0.36 (−0.44,−0.27)

raw + MPT −0.74 −0.64 −0.37 (−0.45,−0.29)

imputed + parametric −0.74 −0.37 0.16 (−0.01,0.30)

modeled + parametric −0.78 −0.39 0.19 (0.01,0.33)

modeled + MPT −0.79 −0.40 0.19 (0.01,0.32)

• Pr(β < 0|T,y1:n) = 1 for PO and PH models ⇒ survival

prospects are better for the most fertile flies.

• For CO, inferences are different for joint models than for models

based on raw trajectories.

This may be due in part to relatively poor fits of temporal egg

production for some medflies (e.g. Fly 2).
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Comments:

• Whole point of Tseng et al. (2005) was that PH was

inappropriate for the medfly data. They propose joint model

combining nonparametric COAFT and longitudinal model as

alternative. Made a big deal about choice of survival model and

choice of basis.

• For medfly data, COAFT by far the worst model.

• The basis functions they picked yield worse inferences than just

leaving the TDCs alone and using LVCF.

• LVCF may best when there’s lots of data on each trajectory.

Different than HIV/AIDS clinical trials where CD4 counts often

sparsely collected and wildly variable over time.

• Modeling S0 nonparametrically doesn’t add anything for medfly

data.
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In other words...

• The survival model affects inference. You might be able to do a

lot better with an alternative model. Might be a good idea to

actually fit some alternatives.

• The longitudinal model affects inference. LVCF biases β̂ in the

PH model, but if longitudinal model is wrong, you could make

things worse.

• Although nonparametric modeling adds flexibility, it may not

help prediction.
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• One more, fly 3: raw data and fitted trajectories.
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• Fly 3: Modeled trajectories, parametric model. Solid is PO,

dashed is PH, and dotted is CO. (CO has largest CPO too).
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• Fly 3: Modeled trajectories, parametric and MPT models. Solid

is PO, dashed is PH, and dotted is CO. Nonparametric doesn’t

help much.
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• Fly 3: Raw trajectories (LVCF), MPT models. Solid is PO,

dashed is PH, and dotted is CO. (Now PH has largest CPO).
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Discussion

• Bayesian semiparametric mixtures of Polya trees provide for

flexible inference in joint regression modeling settings, however

not needed here. Same baseline for S0 in all models.

• Have found COAFT to be superior in data on time to bankruptcy

of firms, PH to be superior in time to death of hemodialysis

patients, PH superior in Stanford Heart Transplant data, etc.

• The survival component of joint models can be specified as

COAFT, PH, or PO.

• Model selection can be carried out using LPML statistics and

corresponding pseudo Bayes factors.
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• Future work involves

– More complex structures for y(t); e.g.

yi ∼ Nni
(Xibi, Ini

σ2 + K(κ)),

where K(κ) obtained from mean-zero Gaussian process or

penalized spline on top of trend Xibi.

– AH can be fit but not pleasant to do. More work to be done.

– New model, proportional mean life:

E(T − t|T > t) = ex(t)βE(T0 − t|T0 > t).

Nice interpretation for β. TDC version hasn’t been done.

• Was originally going to also talk about joint modeling of

electrical component lifetimes as well. Main conclusion: raw

trajectories work about as well as Gaussian process and IOU

process on top of trend. Harder to predict into future though.
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