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Model
Analysis of SCCCR prostate cancer survival

SCCCR data set on prostate cancer survival

Large dataset on prostate cancer survival that does not
follow proportional hazards.
n = 20599 patients from South Carolina Central Cancer
Registry (SCCCR) for the period 1996–2004; each
recorded with county, race, marital status, grade of tumor,
and SEER summary stage; 72.3% are censored.
Need to allow for non-proportional hazards and
accommodate correlation of survival times within county.
Joint work with Li Li and Jiajia Zhang.
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Model
Analysis of SCCCR prostate cancer survival

Extended hazards model

Etezadi-Amoli and Ciampi (1987) propose EH model

λx(t) = λ0(tex′β)ex′γ .

Say x = (x1, x2), then EH is

λx(t) = λ0(teβ1x1+β2x2)eγ1x1+γ2x2 .

γ1 = β1 ⇒ x1 has AFT interpretation; β1 = 0⇒ x1 has PH
interpretation; γ1 = 0⇒ x1 has AH interpretation.
Likelihood for observing {(ti ,xi , δi)}ni=1

L(β,γ, λ0(·)) =
n∏

i=1

{
eγ′xiλ0(eβ′xi ti )

}δi

exp

{
−eγ′xi

∫ ti

0
λ0(teβ′xi )dt

}
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Analysis of SCCCR prostate cancer survival

Baseline hazard λ0(t)

Want to shrink λ0(t) toward parametric target λθ(t):

λ0(t) =
J∑

j=1

bjBkj(t)

where Bk1(·), . . . ,Bk ,J(·) are k th order B-spline basis
function over knots (s1, . . . , sJ+k ).

Let s̃j =
∑j+k

j=k+1 sk/(k − 1) and bj = λθ(s̃j).
Schoenberg’s approximation theorem (Marsden 1972)
says max0≤t≤sJ+1 ||λ0(t)− λθ(t)|| ≤ ε(λθ, k , J).
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Model
Analysis of SCCCR prostate cancer survival

Posterior updating of model

Step 1: Update the blocks {β,γ}, θ, c separately using
adaptive Metropolis-Hastings algorithms (Haario,
Saksman, and Tamminen 2005).
Step 2: Sample g-prior parameters g−1

1 from
Gamma(ag + 1,bg + β′x′xβ/2n + bg) and g−1

2 from
Gamma(ag + 1,bg + γ ′x′xβ/2n + bg).
Step 3: Sample the latent random vectors ui from

ui |β,γ,b,θ,u−i ∼ Mult

(
b1B1(eβ′xi ti )∑n
j=1 bj Bj (eβ′xi ti )

, . . . ,
bJ BJ (eβ′xi ti )∑n
j=1 bj B∗j (eβ′xi ti )

)

Step 4: B-spline coefficients are updated by

bj |β,γ,b−j ,θ, {ui} ∼ Gamma

∑
i∈S

uij + cλθ(s̃j ), c +
n∑

i=1

eγ′xi

∫ ti

0
Bj (teβ′xi )dt


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Works great on simulated data

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival function

t

S
0(

t)
True
Mean estimates
2.5%, 97.5% quantiles

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Density function

t

f 0
(t)

True
Mean estimates
2.5%, 97.5% quantiles

0 5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

Hazard function

t

λ 0
(t)

True
Mean estimates
2.5%, 97.5% quantiles

0 5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

Hazard function

t

λ 0
(t)

●●● ●●●●●●●●●●●●●●●●●●

True
Mean estimates
Mean λθ

7 / 38



I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of SCCCR prostate cancer survival

Spatial dependence via frailties impractical

PH with frailties:

λ(ti |x) = λ0(ti)eγ′xi +gci ,

where gci are county-level frailties, ci is county subject i in.
EH with frailties:

λ(ti |x) = λ0{tieβ′xi +bci }eγ′xi +gci ,

where, for our data, b1, . . . ,b46 and g1, . . . ,g46 are
county-level frailties.
Possible but impractical, and hard to interpret.
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Analysis of SCCCR prostate cancer survival

Spatial dependence via copula works great

Define Yi = Φ−1 {1− eΛi (Ti )
}

where Φ(·) is the standard
normal cumulative distribution function.
Under Li and Lin (2006)

Y ∼ N(0,Γ).

Likelihood ffrom data {(ti ,xi , δi)}ni=1 is

Ls(β,γ,b,θ,Γ) =

∫ [∏
i∈S

fi (ti )
φ(yi )

][∏
i∈Sc

fi (zi )

φ(yi )
I(zi > ti )

]
φ(y; 0,Γ)

∏
i∈Sc

dzi

How to define Γ?
We consider county-level lattice data; popular correlation
model is intrinsic conditional autoregressive (ICAR) prior.
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Analysis of SCCCR prostate cancer survival

ICAR definition

α = (α1, · · · , αm) is vector of correlated effects on a lattice.
ICAR prior on α is p(α) ∝ exp{−ϕα′(D−W)α/2}
Implication of ICAR prior:
αj |α−j , ϕ ∼ N

(∑n
j=1 ωijαj/ωj+,1/(ϕωj+)

)
.

Random effects approach
Ỹ = (Ỹ1, . . . , Ỹm) = (Ỹ11, . . . , Ỹ1n1 , . . . , Ỹm1, . . . , Ỹmnm ).
Ỹij = αi + εij , α ∼ Nm(0,Ω), ε ∼ Nn(0, Iσ2).
Resulting correlation matrix Γ = corr(Ỹ) involves one
unknown parameter ϕ∗.
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Analysis of SCCCR prostate cancer survival

Posterior updating-latent survival approach

MCMC sampling steps 1 to 3 are the same as before.
Step 4: Propose bnew

j from

Gamma

(∑
i∈Sc

uij + cλθ(s̃j ), c +
n∑

i=1

eγ′xi

∫ ti

0
Bj (teβ′xi )dt

)

and accept it with probability

min

{
1,
∏n

i=1 φ(yi )e−ynew ′Γ−1ynew/2∏n
i=1 φ(ynew

i )e−y′Γ−1y/2

}

where ynew is new transformed failure time vector
corresponding to bnew

j .

Step 5: Sample Yi ∼ N(yi |y−i ,Γ)I(yi > Φ−1{Fi(ti))} then
set zi = F−1

i {Φ(yi)}.
Step 6: Update ϕ∗ using adaptive Metropolis-Hastings.
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Analysis of SCCCR prostate cancer survival

Efficient evaluation of y′Γ−1y

Γ is a n × n matrix
Elements of Γ−1 can be easily computed using SVD,
Γ−1 = A−1U1

(
(K∗ + σ2Im)−1 − σ−2Im

)
U′1A−1 + σ−2A−2

where A is a diagonal matrix, U1 = (u1, . . . ,um), ui is a
vector of length n with ones corresponding to county i and
zero elsewhere.
y′Γ−1y = x′

(
(K∗ + σ2Im)−1 − σ−2Im

)
x + σ−2y′A−2y
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Savage-Dickey ratio for global and per-variable tests

Example of global test of PH vs. EH

BF12 =
π(β = 0|D,EH)

π(β = 0|EH)
.

Example of per-variable of PH for xj vs. EH

BF12 =
π(βj = 0|D,EH)

π(βj = 0|EH)
.
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Analysis of SCCCR prostate cancer survival

SCCCR data

SCCCR prostate cancer data for the period 1996–2004.
Baseline covariates are county of residence, age, race,
marital status, grade of tumor differentiation, and SEER
summary stage.
n = 20599 patients in the dataset after excluding subjects
with missing information.
72.3% of the survival times are right-censored.

Goal: assess racial disparity in prostate cancer survival,
adjusting for the remaining risk factors and accounting for the
county the subject lives in.

14 / 38



I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of SCCCR prostate cancer survival

SCCCR data

Table: Summary characteristics of prostate cancer patients in SC from
1996-2004.

Covariate n Sample percentage
Race Black 6483 0.32

White 14116 0.68
Marital status Non-married 4525 0.22

Married 16074 0.78
Grade well or moderately differentiated 15309 0.74

poorly differentiated or undifferentiated 5290 0.26
SEER summary stage Localized or regional 19792 0.96

Distant 807 0.04

15 / 38



I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of SCCCR prostate cancer survival

Non-spatial EH and reduced models

Table: Summary of fitting the extended hazard model EH, the reduced
model, AFT, and PH; ∗ indicates LPML− 21000 and DIC − 42000.

Covar EH Reduced AFT PH PH+additive age
β = γ β = 0 β = 0

Age β1 0.50(0.48,0.52) 0.48(0.46,0.50) 0.48(0.45,0.51) –
γ1 0.45(0.42,0.49) γ1 = β1 – 0.65(0.62,0.68) –

Race β2 0.18(0.15,0.21) 0.20(0.16,0.21) 0.18(0.15,0.22) – –
γ2 0.18(0.12,0.24) γ2 = β2 – 0.26(0.21,0.32) 0.26(0.20,0.31)

Marital β3 -0.06(-0.11,-0.02) -0.05(-0.09,-0.00) 0.26(0.21,0.30) – –
status γ3 0.35(0.29,0.40) 0.33(0.28,0.40) – 0.33(0.27,0.39) 0.31(0.26,0.37)
Grade β4 0.03(-0.02,0.08) β4 = 0 0.27(0.22,0.32) – –

γ4 0.36(0.29,0.41) 0.37(0.31,0.43) – 0.38(0.32,0.44) 0.37(0.33,0.43)
SEER β5 3.19(2.80,3.53) 3.27(2.79,3.57) 1.50(1.41,1.59) – –
stage γ5 1.02(0.83,1.20) 1.00(0.82,1.19) – 1.56(1.47,1.64) 1.57(1.19,1.65)

LPML∗ -161.0 -162.0 -206.5 -242.5 -231.9
DIC∗ 267.7 270.7 366.0 443.0 412.8
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Non-spatial EH and reduced models

Table: Bayes factors for comparing EH to PH, AFT, and AH with and without
spatial correlation.

EH Spatial+EH
Covariate PH AFT AH PH AFT AH

Age > 1000 0.08 > 1000 > 1000 0.01 > 1000
Race > 1000 0.01 > 1000 > 1000 < 0.01 > 1000

Marital status 1.79 > 1000 > 1000 1.18 > 1000 > 1000
Grade 0.14 > 1000 > 1000 0.08 > 1000 > 1000

SEER stage > 1000 > 1000 > 1000 > 1000 > 1000 > 1000
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Spatial EH and reduced models

Table: Summary of spatial models; ∗ indicates LPML− 21000 and
DIC − 42000.

Covariates Marginal EH Marginal reduced PH+ICAR+additive age
β = 0

Age β1 0.50(0.47,0.52) 0.47(0.46,0.49) –
γ1 0.46(0.43,0.49) γ1 = β1 –

Race β2 0.18(0.15,0.21) 0.20(0.17,0.22) –
γ2 0.17(0.11,0.23) γ2 = β2 0.24(0.18,0.30)

Marital status β3 -0.06(-0.10,-0.02) -0.02(-0.05,-0.00) –
γ3 0.34(0.28,0.41) 0.33(0.27,0.39) 0.32(0.25,0.38)

Grade β4 0.03(-0.01,0.07) β4 = 0 –
γ4 0.36(0.30,0.42) 0.38(0.32,0.43) 0.37(0.32,0.44)

SEER stage β5 3.16(2.86,3.34) 2.77(2.72,2.82) –
γ5 1.10(0.94,1.26) 1.21(1.01,1.33) 1.55(1.46,1.64)

ϕ∗ 50.1(19.9,113.7) 54.6(22.7,120.8) 33.08(9.2,100.1)
LPML∗ -142.7 -143.2 -215.7
DIC∗ 192.4 164.0 332.5
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Analysis of SCCCR prostate cancer survival

Spatial EH and reduced models
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Figure: Map of (a) Mortality rate, (b) ICAR frailties in the PH model and (c)
random effects in the marginal reduced model for SC counties.
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Spatial EH and reduced models
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Spatial EH and reduced models
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Interpretation for race effect

Based on the fitted results of the reduced models with and
without spatial dependence, white South Carolina subjects
diagnosed with prostrate cancer in live 22% longer
(e0.20 ≈ 1.22) than black patients (95% CI is 18% to 25%),
fixing age, stage, and SEER stage.
Cox said “...the physical or substantive basis
for...proportional hazards models...is one of its
weaknesses...” and goes on to suggest that “...accelerated
failure time models are in many ways more appealing
because of their quite direct physical interpretation.”
The SCCCR analysis showed that the main covariate of
interest, race, is best modeled as an AFT effect.
Survival probabilities for black patients are significantly
lower than those for white patients when other factors are
fixed at the same levels.
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More interpretation

Decreasing age by one year increases survival time by
5.4%.
Hazard of dying increases 46% for poorly or
undifferentiated grades vs. well or moderately
differentiated, holding age, race, and SEER stage
constant.
SEER stage has general EH effects, e2.77 ≈ 16 (AH) and
e1.21 ≈ 3.4 (PH). Those with distant stage are at least
three times worse in one-sixteenth of the time as those
with localized or regional.
Marital status essentially has PH interpretation; single
(including widowed or separated) subjects are e0.33 ≈ 1.39
times more likely to die at any instant than married.
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Model
Analysis of frog population extinction

About this work

Joint work with Haiming Zhou and Roland Knapp (Sierra
Nevada Aquatic Research Laboratory).
Frogs and other amphibians have been dying off in large
numbers since the 1980s because of a deadly fungus
called Batrachochytrium dendrobatidis, also known as Bd.
Dr. Knapp has been studying the amphibian declines for
the past decade at Sierra Nevada Aquatic Research
Laboratory; he has hiked thousands of miles and surveyed
hundreds of frog populations in Sequoia-Kings Canyon
National Park collecting the data by hand.
Again, proportional hazards is grossly violated for these
data.
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Model
Analysis of frog population extinction

The Frog Data (2000-2011)

Contains 309 frog populations. Each
was followed up until infection or
being censored (10% censoring).

The response is the Bd infection time
(i.e. Bd arrival year − baseline year).

Main covariates:
bdwater: whether or not Bd has
been found in the watershed.
bddistance: straight-line distance to
the nearest Bd location.

Populations near each other tend to
become infected at about the same
time.
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Model
Analysis of frog population extinction

Objectives

Ti = T (si) is time to local extinction for pop’n located at si .

xi = x(si) : a p × 1 vector of covariates.

Goal 1: describe the association between x(s) and T (s)
while allowing for spatial dependence.

Goal 2: predict T (s0) given x(s0) at any new location s0.
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LDDPM model and Spatial Extension

LDDPM (De Iorio et al., 2009; Jara et al., 2010): Yi = log Ti
given xi independently follow mixture model

Fxi (y |G) =

∫
Φ

(
y − x′iβ

σ

)
dG{β, σ2},

where G follows a Dirichlet Process (DP) prior, i.e.
G ∼ DP(α,G0).
Model the joint distribution of Y = (Y1, . . . ,Yn)′ by

F (t1, . . . , tn|G) = C(Fx1(t1|G), . . . ,Fxn (tn|G); θ),

where C(u1, . . . ,un; θ) is a spatial copula with parameter θ,
which is used for capturing spatial dependence.
We use point-referenced Gaussian copula of Li and Lin
(2006).
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Model
Analysis of frog population extinction

Specification of Fxi(y |G)

Assume Yi = log Ti given xi follows a mixture model

Fxi (y |G) =

∫
Φ

(
y − x′iβ

σ

)
dG{β, σ2},

where G ∼ DP(α,G0) with concentration parameter α.

G in truncated stick-breaking form (Sethuraman, 1994) as

G =
N∑

k=1

wkδ(βk ,σ
2
k ), wk = Vk

∏
j<k

(1− Vj),

where Vk |α
iid∼ Beta(1, α), (βk , σ

2
k )

iid∼ G0.
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Model
Analysis of frog population extinction

The Likelihood

Observed data {(yo
i , δi ,xi ,si) : i = 1, . . . ,n}.

Denote by yi the latent true log event-time corresponding
to yo

i .

Then δi = I(yi = yo
i ), where δi = 0 implies yi > yo

i .

The augmented likelihood for parameters {y1, . . . , yn,G,θ}
is

L =
n∏

i=1

fxi (yi |G)
{
δi I(yi = yo

i ) + (1− δi)I(yi > yo
i )
}

× |C|−1/2 exp
{
−1

2
z′(C−1 − In)z

}
where fxi (yi |G) is the density w.r.t. Fxi (yi |G),

and z = (z1, . . . , zn)′ with zi = Φ−1 {Fxi (yi |G)}.
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Model
Analysis of frog population extinction

MCMC Overview

All parameters involved in G are updated based on a
modification of the blocked Gibbs sampler (Ishwaran and
James, 2001): M-H samplers with independent proposals.

The latent yis are updated via independent M-H sampler.

Delayed rejection (Tierney and Mira, 1999) used for
several parameters; helps sampler not get “stuck.”

The correlation parameters θ are updated using adaptive
M-H (Haario et al., 2001).

For large n, the inversion of the n × n matrix C
substantially sped up using a full scale approximation
(FSA) (Sang and Huang, 2012).
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Model
Analysis of frog population extinction

Simulated Data

Assume the log T given x follows a mixture of normals

f (y |x) = 0.4N(3.5 + 0.5x ,12) + 0.6N(2.5− x ,0.52).

Specify covariance matrix C with θ1 = 0.98 and θ2 = 0.1.

Around 10% of survival times are right-censored.
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Figure: 330 randomly selected sites: “·” the n = 300 subjects for estimation;
“◦” the 30 subjects for prediction.
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I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of frog population extinction

Simulated Data: Inference on Spatial Correlation

Table: Posterior summary statistics for the spatial correlation parameters

Par. True Mean Median Std. dev. 95% HPD Interval
θ1 0.98 0.968 0.971 0.019 (0.933, 1.000)
θ2 0.10 0.095 0.093 0.021 (0.056, 0.138)
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I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of frog population extinction

Simulated Data: Estimated Density
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Figure: Estimated density of log(T ) when x = 1 (left) and x = −1 (right).
Recall: f (y |x) = 0.4N(3.5 + 0.5x , 12) + 0.6N(2.5− x , 0.52).
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I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of frog population extinction

Simulated Data: Prediction

Table: The mean squared prediction error (MSPE) for the held-out 30
locations under two different methods

Method MSPE
De Iorio 1.325
Ours 0.269
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I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of frog population extinction

Frog Data: Inference on Spatial Correlation

FYI: the spatial Gaussian copula involves the n × n correlation
matrix C(si ,sj ; θ) = θ1ρ(si ,sj ) + (1− θ1)I(si = sj ),
where θ1 ∈ [0,1] and ρ(si ,sj ) = exp

{
−θ2||si − sj ||

}
.

Posterior mean θ̂1 = 0.9937.

Posterior mean θ̂2 = 0.0866, indicating the correlation
decays by 1− exp(−0.0866× 1) = 8% for every 1-km
increase in distance and 1− exp(−0.0866× 10) = 58% for
every 10-km increase in distance.

Table: Posterior summary statistics for the spatial correlation parameters

Par. Mean Median Std. dev. 95% HPD Interval
θ1 0.9937 0.9941 0.0029 (0.9879, 0.9988)
θ2 0.0866 0.0841 0.0211 (0.0493, 0.1297)
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I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of frog population extinction

Frog Data: Estimated Hazard
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Figure: Estimated hazard function with 90% point-wise CI for bdwater = 1
vs bdwater = 0 when the bddistance is fixed at its population mean.
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I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of frog population extinction

Frog Data: Spatial Prediction

Spatial map for the transformed process
z(s) = Φ−1 {Fx(s)(log T (s)|G)

}
.
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Figure: Predictive spatial map based on new 2000 random locations in D.
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I: Prostate cancer, areally-referenced semiparametric survival
II: Frog extinction, point-referenced nonparametric survival

Model
Analysis of frog population extinction

Remarks

Proposed Bayesian spatial copula approaches to estimate
survival curves semiparametrically (EH model) and
nonparametrically (LDDPM) while allowing for spatial
dependence, leading to high predictive accuracy.
Adopted the FSA approach to compute the inversion of
n-dimensional spatial covariance matrices for
georeferenced data.
Future research involves use of low-rank approaches to
modeling data with lots of spatial locations, e.g. random
projections (Banerjee et al., 2012) or predictive processes
(Banerjee et al., 2008). Two different Banerjees!
Extension to simpler semiparametric models such as
proportional odds.
Thanks to my colleagues Li Li, Haiming Zhou, Roland
Knapp, and Jiajia Zhang. Thanks for the invitation!
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