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Motivation

Spatially correlated survival data

I Spatial survival data commonly seen in epidemiology, environmental
health, ecology, etc.

I Data structure: {(tij , xij , si ) : i = 1, . . . ,m; j = 1, . . . , ni}, where
• tij is a random survival time for individual j within region/location si ,
• xij is a related p-vector of covariates, and
• {si}m

i=1 is a set of distinct regions/locations.
I Spatial survival data typically classified into two types:

• georeferenced data, where si ∈ R2 is recorded as longitude and latitude;
• areal data, where si ∈ {1, . . . ,m} represents a geographic region, e.g.

county, state.

Tim Hanson (USC) Bayesian Spatial Survival Models 3 / 40



Motivation

Arbitrary censoring

I Survival time tij is said to be arbitrarily censored if we only observe an
interval (aij , bij) in which tij lies, where 0 ≤ aij ≤ bij ≤ ∞.

I Arbitrary censoring is mixture of
• right censoring with bij =∞,
• left censoring with aij = 0,
• interval censoring with 0 < aij < bij <∞,
• and noncensoring with aij = bij ; define (x , x) = {x}.

I The observed data are {(aij , bij , xij , si ) : i = 1, . . . ,m; j = 1, . . . , ni}.
I Goal: model Sxij (t) = P(tij > t|xij) semiparametrically in the

presence of arbitrary censoring and spatial dependence.
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Motivation

Popular semiparametric models

I Three commonly used models:
• Proportional hazards (PH) model

Sxij (t) = S0(t)ex
′
ij β+vi

• Accelerated failure time (AFT) model

Sxij (t) = S0(ex
′
ij β+vi t)

• Proportional odds (PO) model
Sxij (t)

1− Sxij (t) = e−x
′
ij β−vi

S0(t)
1− S0(t) .

I vi is unobserved “frailty” associated with si ; S0(t) is baseline survival
function corresponding to xij = 0 and vi = 0.

I ex
′
ij β interpreted as relative risk under PH, acceleration factor under

AFT, or relative odds of surviving past any time t under PO for those
w/ xij relative to xij = 0.
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Motivation

15 years of spatial survival modeling...

I Human health: data on leukemia survival (Henderson et al., 2002),
infant/childhood mortality (Banerjee et al., 2003; Kneib, 2006),
coronary artery bypass grafting (Hennerfeind et al., 2006), asthma (Li
and Ryan, 2002; Li and Lin, 2006), breast cancer (Zhao and Hanson,
2011; Hanson et al., 2012; Zhou et al., 2015), mortality due to air
pollution (Jerrett et al., 2013), colorectal cancer survival (Liu et al.,
2014), smoking cessation (Pan et al., 2014), HIV/AIDS patients
(Martins et al., 2016), time to tooth loss (Schnell et al., 2015).

I Other: political event processes (Darmofal, 2009), gourd mildew
outbreaks (Ojiambo and Kang, 2013), forest fires (Morin, 2014), pine
trees (Li et al., 2015 JASA), health and pharmaceutical firms (Arbia
et al., 2016), emergency service response times (Taylor, 2016).

I All twenty of these use proportional hazards; other semiparametric
models not considered or compared to.
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Motivation

Alternative models do exist...

I e.g. Diva et al. (2008), Zhao et al. (2009), Wang et al. (2012), Li et
al. (2015 Bcs), a few others.

I These only consider areal (e.g. county-level) data; all right-censored;
time-dependent covariates not considered nor is variable selection;
diagnostics limited.

I Our goal is to provide broadly comprehensive approach to modeling
spatial survival data semiparametrically, including AFT and PO as
well as PH. Bring together many ideas in literature and provide
easy-to-use R package.
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Motivation

More related literature...

I Zhang and Davidian (2008, Biometrics) model the baseline f0(t) by a
polynomial-based seminonparametric density estimator under all three
models for arbitrarily censored data, but not for spatial data.

I Zhao, Hanson and Carlin (2009, Biometrika) consider a mixture of
Polya trees prior on f0(t) under all three models for right censored
areal data. The mixing is not very good under AFT.

I Pan et al. (2014, CSDA), Lin et al. (2015, LiDA) and Wang et al.
(2016, Biometrics), etc. use monotone splines to approximate the
baseline hazard H0(t) under PH for interval censored data. With
clever data augmentation, inference obtained via simple Gibbs sampler
or EM algorithm. But their method has not been extended to fit the
AFT model, georeferenced data, etc. Also requires each survival time
interval censored – cannot handle times that are actually observed.
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Motivation

Some available R packages

I BayesX (Belitz et al. 2015) uses penalized B-splines to model log
baseline hazard under the PH. It allows for arbitrary censoring and
spatial frailties (for both georeferenced and areal data). Also
R2BayesX. No interval censored data.

I ICBayes (Pan et al. 2014) can be used to fit the PH and PO for
interval-censored data, but not for spatial data yet.

I bayesSurv (Komárek and Lessffre, 2007) fits the AFT based on finite
mixtures of normal and approximating B-splines. Frailties, but not
spatial.

I However, there is no approach/package that can fit all three models
using the same treatment on the baseline function, and allowing for
arbitrary censoring and spatial dependence simultaneously.
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Bayesian Semiparametric Models

Bernstein polynomial prior

I Bernstein polynomial (BP) prior (Petrone 1999),

b(x) =
J∑

j=1
wjβ(x |j , J − j + 1),

where w = (w1, . . . ,wJ)′ ∼ Dirichlet(α, . . . , α) and β(·|a, b) is the
density of Beta(a, b).

I Under mild conditions, for any density f with support (0, 1),

sup
0<x<1

|f (x)− b(x)| = O(J−1).

I Corresponding CDF is

B(x) =
J∑

j=1
wj Ix (j , J − j + 1),

where Ix (a, b) is the CDF associated with β(x |a, b).
I Note E{b(x)} = 1 for x ∈ (0, 1).
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Bayesian Semiparametric Models

Transformed Bernstein Polynomial Prior (TBPP) on S0(t)

I Let {Sθ : θ ∈ Θ} denote parametric family of survival functions with
support on R+; e.g. log-logistic, lognormal, or Weibull.

I Note Sθ(t) always lies in the interval (0, 1) for 0 < t <∞, so for a
relatively large J , S0(t) and f0(t) can be well approximated by

S0(t) = B(Sθ(t)), f0(t) = b(Sθ(t))fθ(t)

where fθ is density associated with Sθ; Chen et al. (2014).
I Then E{S0(t)} = Sθ(t) and E{f0(t)} = fθ(t).
I The weights w “adjust” the shape of S0 relative to Sθ. Increasing J

gives greater flexibility.
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Bayesian Semiparametric Models

TBPP with J = 15 and α = 0.5
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Bayesian Semiparametric Models

TBPP with J = 15 and α = 5
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Bayesian Semiparametric Models

TBPP with J = 15 and α = 100
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Bayesian Semiparametric Models

Model for frailties v = (v1, . . . , vm)′

I Areal data: intrinsic conditionally autoregressive (CAR)
• Let eij = 1 if i and j are adjacent and eij = 0 otherwise; set eii = 0.
• The CAR prior is defined through a set of conditional distributions

vi |{vj}j 6=i ∼ N

 ∑
{j:j 6=i}

eijvj/ei+, τ
2/ei+

 , i = 1, . . . ,m,

where ei+ =
∑
{j:j 6=i} eij .

I Georeferenced data: Gaussian random field (GRF)
• Assume v ∼ Nm(0, τ 2R), where R[i , j] = e−(φ‖si−sj‖)ν . Here φ > 0

measures the spatial decay over distance, and ν ∈ (0, 2] is pre-specified.
• The GRF prior is also a set of conditional distributions

vi |{vj}j 6=i ∼ N

− ∑
{j:j 6=i}

pijvj/pii , τ
2/pii

 , i = 1, . . . ,m,

where pij = (R−1)[i , j].
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Bayesian Semiparametric Models

Likelihood & posterior

I Observed data {(aij , bij , xij , si ) : i = 1, . . . ,m; j = 1, . . . , ni}.
I The likelihood for (w,θ,β, v) is given by

L(w,θ,β, v) =
m∏

i=1

ni∏
j=1

[Sxij (aij)− Sxij (bij)]I{aij<bij}fxij (aij)I{aij =bij},

where fxij is density associated with Sxij .
I Posterior given the data D is

p(w,θ,β, v|D) ∝ L(w,θ,β, v)p(w|α)p(α)p(θ)p(β)p(v|τ 2, φ)p(τ 2)p(φ),

p(φ) needed only for georeferenced data.
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Bayesian Semiparametric Models

Prior specification

I Assume α ∼ Γ(a0, b0), θ ∼ N2(θ0,V0), β ∼ Np(β0,S0),
τ−2 ∼ Γ(aτ , bτ ), and φ ∼ Γ(aφ, bφ).

I When wj = 1/J the underlying parametric model S0(t) = Sθ(t) is
obtained and L(w,θ,β, v) is same as parametric likelihood function.

I Fit from standard parametric survival model can provide good starting
values and proposals for MCMC.

I Default hyperprior values: a0 = b0 = 1, aτ = bτ = 0.001, β0 = 0,
S0 = 1010Ip, θ0 = θ̂, and V0 = 10V̂, where θ̂ is parametric MLE of θ
and V̂ is estimated covariance.

I For georeferenced data, set aφ = 1 and choose bφ so that
Pr(φ > φ0) = 0.95, where φ0 satisfies e−(φ0 max ‖si−sj‖)ν = 0.001.
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Bayesian Semiparametric Models

MCMC overview

I Set zJ−1 = (z1, . . . , zJ−1)′ with zj = log(wj)− log(wJ).
I The β, θ, zJ−1, α and φ all block-adaptive Metropolis samplers

(Haario et al., 2001); initial proposal covariance from underlying
parametric fit V̂ & V̂θ for β & θ; 0.16IJ−1 for zJ−1; and 0.16 for α
and φ.

I Frailty vi updated individually via Metropolis-Hastings; proposal uses
conditional variance of vi |{vj}j 6=i .

I τ−2 updated from full conditional.
I For large m, full scale approximation (FSA) (Sang and Huang, 2012,

JRSSB) used to invert Rm×m.
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Bayesian Semiparametric Models

spBayesSurv compared to ICBayes

500 replicates size n = 500 under non-frailty PH model for pure interval-
censored data; 10,000 MCMC scans kept after burn-in of 10,000 iterations.

Method Time Parameter BIAS PSD SD-Est CP Effective size

survregbayes 63 β1 = 1 -0.018 0.134 0.134 0.940 1139
β2 = 1 -0.015 0.086 0.087 0.940 934

ICBayes 310 β1 = 1 -0.036 0.133 0.132 0.938 346
β2 = 1 -0.019 0.084 0.085 0.938 292

Authors of ICBayes claim their method is efficient and “...does not require
imputing any unobserved failure times or contain any complicated
Metropolis- Hastings steps...” In fact, their approach augments every
interval censored time with as many latent variables as there are spline
basis functions, e.g. nJ additional parameters. Their approach cannot be
used with uncensored data, nor can it be generalized to AFT.
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Bayesian Semiparametric Models

Spike and slab variable selection (Kuo and Mallick, 1998)

I Multiply βk by a latent γk ; γk = 0/1 indicates absence/presence of xk
in model, k = 1, . . . , p.

I Prior is
β ∼ Np(0, gn(X′X)−1), γk

iid∼ Bern(0.5),

where X = (x1, . . . , xn)′ is the usual design matrix with
mean-centered covariates, i.e. 1′nX = 0′p.

I Hanson, Branscum and Johnson (2014) note that ex
′
ij β •∼ logN(0, gp)

in many settings.
I Constant g is chosen so that Pr(ex

′
ij β < 10) = 0.9: g = 3.228/p.
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Bayesian Semiparametric Models

Left-truncation

I Survival tij is left-truncated at uij ≥ 0, if uij is time when subject ij is
first observed.

I Given left-truncated data {(uij , aij , bij , xij , si )}, the likelihood is

L(w,θ,β, v) =
m∏

i=1

ni∏
j=1

[Sxij (aij)− Sxij (bij)]I{aij<bij}fxij (aij)I{aij =bij}/Sxij (uij).
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Bayesian Semiparametric Models

Time-dependent covariates

I With left-truncation AFT, PH and PO models can be extended to
time-dependent covariates (Hanson et al., 2009, CJS).

I Assume xij(t) is a step function:

xij(t) =
oij∑

k=1
xij,k I(tij,k ≤ t < tij,k+1), where tij,1 = uij , tij,oij +1 =∞.

I Replace the observation (uij , aij , bij , xij(t), si ) by new oij observations
(tij,1, tij,2,∞, xij,1, si ), (tij,2, tij,3,∞, xij,2, si ), . . . , (tij,oij , aij , bij , xij,oij , si ),
yielding a new left truncated data set of size N =

∑m
i=1

∑ni
j=1 oij .
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Bayesian Semiparametric Models

Cox-Snell (1968) variable plots

I r(tij) = − log{Sxij (tij)|D}, depends on posterior [β,θ,w, vi |D].
I Given Sxij (·), − log Sxij (tij) has standard exponential distribution.
I If model is “correct” pairs {r(aij), r(bij)} are approximately random

arbitrarily censored sample from exp(1).
I Estimated integrated hazard plot (using Turnbull, 1974) should be

approximately straight with slope 1.
I Uncertainty visualized by plotting several from [β,θ,w, vi |D].
I Problem: AFT model typically “fits” regardless, e.g. (Baltazar-Aban

and Peña 1995).
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Bayesian Semiparametric Models

LPML and DIC model selection criteria

I DIC is Bayesian version of AIC. Ω all model parameters and f (D|Ω) is
likelihood function based on observed data D.

DIC = EΩ|D[D(Ω)] + pD

where D(Ω) = −2 log f (D|Ω) and pD = EΩ|D[D(Ω)]− D(EΩ|D[Ω]).
I The conditional predictive ordinate (Geisser and Eddy, 1979) for

observation ij is
CPOij = f (Dij |D−ij),

where D−ij = {(xst , ast , bst) : (s, t) 6= (i , j)}.
I LPML = log

∏m
i=1

∏ni
j=1 CPOij .

I Over 100’s of data analyses DIC & LPML typically pick same model.
Differences occur in richly parameterized models and random effects
models (we have both).

I DIC requires thought about what goes into Ω, e.g. including frailties
(v1, . . . , vm)′ is only easy way to compute DIC. LPML does not
require such thought; purely a cross-validated predictive measure.
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Bayesian Semiparametric Models

Partially linear (additive) models

I Additive PH first considered by Gray (1992 JASA) as

hxij (t) = h0(t) exp
{
x′ijβ +

p∑
`=1

b`(xij`)
}
.

I b1(·), . . . , bp(·) penalized B-splines w/ linear portion removed.
I Setting some b`(·) ≡ 0 gives the “partially linear PH model.”
I Spatial versions for PH (Kneib, 2006; Hennerfeind et al., 2006) can

be fit in R2BayesX.
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Bayesian Semiparametric Models

Partially linear (additive) models

I Want additive PH, PO, and AFT models for arbitrarily censored
spatial data.

I Take

b`(·) =
K∑

k=1
ξ`kB`k(·),

where {B`k(·) : k = 0, . . . ,K + 1} are cubic B-spline basis functions.
I Priors for β and ξ` = (ξ`1, . . . , ξ`K ) are

β ∼ N(0,S0), ξ` ∼ N(0, gn(X′`X`)−1), ` = 1, . . . , p

where S0 = 1010Ip, X` is design for the b`(·) term, and
g =

[
log 10/Φ−1(0.9)

]2
/K .
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Bayesian Semiparametric Models

Test linearity of xij`

I Formally H0 : ξ` = 0 vs. H1 : ξ` 6= 0.
I Let BF10 be Bayes factor between H1 and H0. BF10 estimated

large-sample approximation to the Savage-Dickey density ratio
(Verdinelli and Wasserman, 1995):

B̂F 10 = NK (0; 0, gn(X′`X`)−1)
NK (0; m̂`, Σ̂`)

,

where m̂` and Σ̂` are posterior mean and covariance of ξ`.
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Data Analyses Childhood Mortality Data

Application to Nigerian childhood mortality data

I Data are from the 2003 Nigeria Demographic and Health Survey.
I The state of residence is available for each child, so the data type is

areal. There are 37 states, and the sample size is n = 4, 363.
I The survival time is age at death of the child. It was reported in days

if it was less than one month, in months if it was less than two years
and otherwise in years. If the child was still alive by the date of
interview, the right censoring time can be calculated in days.

I To incorporate the inconsistency of time units, we treat all survival
times recorded in months or years as interval censored (details in
paper), yielding arbitrarily censored data.

I Kneib (2006, CSDA) fit a PH model with CAR frailties.
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Data Analyses Childhood Mortality Data

Application to Nigerian childhood mortality data

Continuous variables Mean Std. Dev.

Age at birth (yr.) 28.49 6.48
BMI 22.62 4.21
Breastfeeding duration (mo.) 14.48 7.31
Preceding interval (mo.) 36.46 21.24

Categorical variables Level Proportion (%)

Censoring status uncensored 1.67
interval censored 7.54
right censored 90.79

Place of delivery hospital 32.78
home/other 67.22

Gender of child male 49.48
female 50.52

Education at least primary 47.26
no education 52.74

place of residence urban 34.82
rural 65.18
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Data Analyses Childhood Mortality Data

Model fit using survregbayes

library(spBayesSurv);
### data preparation is omitted here ###
mcmc = list(nburn=50000, nsave=5000, nskip=9, ndisplay=1000);
res = survregbayes(formula=Surv(SurvLeft,SurvRight,type="interval2")~

AgeBirth+BMI+BreastfeedMonth+PrecedingInterval+
HospitalDelivery+Male+MotherEducation+Urban+
frailtyprior("car",State),data=d,survmodel="AFT",
mcmc=mcmc,Proximity=W,selection=FALSE);

summary(res);

I Fit PH via survmodel="PH" and PO via survmodel="PO".
I Set selection=TRUE to perform the spike and slab variable selection.
I Set frailtyprior("grf",State) to fit Gaussian random field

frailty models and frailtyprior("iid",State) to fit exchangeable
Gaussian frailty models.

I Remove frailtyprior() to fit non-frailty models.
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Data Analyses Childhood Mortality Data

Output of the PO model

Posterior inference of regression coefficients
(Adaptive M-H acceptance rate: 0.18116):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp
AgeBirth 0.013442 0.013473 0.009282 -0.004765 0.031530
BMI 0.005937 0.005889 0.016905 -0.027046 0.038724
BreastfeedMonth -0.378559 -0.378286 0.017017 -0.412091 -0.347309
PrecedingInterval -0.016541 -0.016465 0.003913 -0.024405 -0.008966
HospitalDelivery -0.553409 -0.549641 0.181878 -0.917547 -0.203444
Male -0.081336 -0.080647 0.120485 -0.316681 0.152651
MotherEducation -0.701258 -0.701159 0.161873 -1.014701 -0.378442
Urban -0.362983 -0.362667 0.148649 -0.661083 -0.075890

Posterior inference of conditional CAR frailty variance
Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

variance 0.7904 0.7117 0.4062 0.2543 1.7858

Log pseudo marginal likelihood: LPML=-2079.558
Deviance Information Criterion: DIC=4153.352
Number of subjects: n=4363
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Data Analyses Childhood Mortality Data

Variable selection

Table: Childhood mortality data. Selected models with high frequency.

Model Proportions Selected covariates

PH 0.402 Breastfeed, Preceding, Delivery, Education
0.138 Breastfeed, Preceding, Delivery, Education, Residence
0.124 Age, Breastfeed, Preceding, Delivery, Education

AFT 0.401 Breastfeed, Preceding, Delivery, Education
0.244 Breastfeed, Preceding, Delivery, Education, Residence
0.061 Age, Breastfeed, Preceding, Delivery, Education

PO 0.346 Breastfeed, Preceding,Delivery, Education, Residence
0.256 Breastfeed, Preceding, Delivery, Education
0.103 Age, Breastfeed, Preceding, Delivery, Education, Residence
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Data Analyses Childhood Mortality Data

Model comparison and results

Table: Model comparison.

Model Covariates LPML

PH full -2126
selected -2125

AFT full -2127
selected -2125

PO full -2080
selected -2077

Table: Covariate effects from fitting the PO model with selected covariates.

Breastfeeding duration (mo.) -0.376(-0.408, -0.347)
Preceding interval (mo.) -0.015(-0.023, -0.008)
Delivery–hospital -0.519(-0.876, -0.171)
Education–at least primary -0.710(-1.024, -0.402)
Residence–urban -0.338(-0.634, -0.047)
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Data Analyses Childhood Mortality Data

Childhood mortality: posterior mean frailties PO CAR frailty

−1.25 0 1.25
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Data Analyses Loblolly Pine Trees Data

Survival analysis of loblolly pine trees

I Loblolly pine is the most commercially important timber species in
Southeastern United States. Estimating its survival rate is a crucial
task in forestry research.

I The dataset consists of 45,525 loblolly pine trees at 168 distinct sites,
which were established in 1980-1981, and monitored annually until
2001-2002. The data type is georeferenced.

I During the 21-year follow-up, 5,379 trees experienced the death, and
the rest which survived until the last follow-up are treated as right
censored.

I It is of interest to investigate the association between the loblolly pine
survival and several important risk factors after adjusting for spatial
dependence among different sites.
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Data Analyses Loblolly Pine Trees Data

Loblolly pine trees: risk factors

I Time-independent variables:
• treatment (treat): 1–control, 2–light thinning, 3–heavy thinning
• physiographic region (PhyReg): 1–coastal, 2-piedmont, 3-other.

I Time-dependent variables (measured every 3 years):
• total height of tree in meters (TH)
• diameter at breast height in cm (DBH)
• crown class (C): 1–dominant, 2–codominant, 3–intermediate,

4–suppressed.

I After incorporating the time-dependent variables, the final dataset
contains N = 180, 676 observations.

I Li et al. (2015, JASA) used a semiparametric PH model with several
spatial frailty specifications to model the data. However, they showed
that the PH assumption does not hold very well but noted there are
no alternatives.
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Data Analyses Loblolly Pine Trees Data

Loblolly pine trees: AFT, PH and PO

Table: Model comparison.

PH PO AFT

GRF frailty LPML -23,991 -23,882 -23,812
IID frailty LPML -23,966 -23,865 -23,832
Non-frailty LPML -25,508 -25,549 -25,447
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Figure: Cox-Snell residual plot for GRF frailty PH, PO and AFT
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Data Analyses Loblolly Pine Trees Data

Loblolly pine trees: GRF-AFT

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp
DBH -0.126270 -0.126519 0.008354 -0.141792 -0.109738
TH -0.011462 -0.011488 0.001342 -0.014014 -0.008826
treat2 -0.388399 -0.387577 0.020644 -0.430511 -0.349127
treat3 -0.544378 -0.543409 0.027292 -0.601009 -0.495238
PhyReg2 -0.389881 -0.386379 0.106980 -0.593728 -0.200604
PhyReg3 -0.259512 -0.258088 0.132703 -0.510584 0.013621
C2 0.043812 0.043210 0.025837 -0.002139 0.097142
C3 0.429512 0.427719 0.031195 0.375179 0.491249
C4 1.101149 1.099480 0.046046 1.017613 1.194449
treat2:PhyReg2 0.105225 0.106106 0.031557 0.045876 0.167650
treat3:PhyReg2 0.246436 0.245954 0.042714 0.162279 0.331992
treat2:PhyReg3 -0.216354 -0.213024 0.079511 -0.367900 -0.063942
treat3:PhyReg3 0.125298 0.126770 0.084076 -0.036644 0.285920

variance 0.34961 0.34475 0.04802 0.26954 0.45747
range 0.2735 0.2643 0.0700 0.1651 0.4342
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Data Analyses Loblolly Pine Trees Data

Survival plots for coastal region under GRF-AFT
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Data Analyses Loblolly Pine Trees Data

Survival plots for Piedmont region under GRF-AFT
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Data Analyses Loblolly Pine Trees Data

Survival plots for other region under GRF-AFT
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Data Analyses Loblolly Pine Trees Data

Loblolly pine trees: spatial dependence

Under the exponential correlation ρ(si , sj) = e−φ‖si−sj‖, the posterior mean
is φ̂ = 0.2735, indicating that the correlation decays by
1− e−0.2735 = 24% for every 1-km increase in distance.
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Data Analyses Leukemia data

Leukemia data

I Survival of acute myeloid leukemia in n = 1043 patients
I Of interest to investigate possible spatial variation in survival after

accounting for age, sex, log white blood cell count (wbc) at diagnosis,
and Townsend score (tpi, higher = less affluent).

I m = 24 administrative districts.
I Henderson et al. (2002) fitted PH CAR model w/ linear predictors.
I We fit additive PH, AFT and PO models with CAR frailties: LPML

for PH, AFT and PO are -5946, -5945, and -5919, respectively.
I BF for testing linearity of age, wbc and tpi are 0.13, 0.04 and 0.01;

linear effects fine.
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Data Analyses Leukemia data

Leukemia data: nonlinear age, log-wbc, and tpi effects
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Data Analyses Leukemia data

Leukemia data: Cox-Snell plots for PH, AFT, and PO
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Summary

Outline
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Summary

Summary

I Proposed new AFT, PH and PO frailty models for survival data
subject to arbitrary censoring and spatial dependence.

I All three data analyses did not choose PH despite this being how data
initially analyzed.

I Baseline modeled via Bernstein polynomial centered at parametric
family; smooth densities leads to efficient posterior updating.

I Developed a function survregbayes within the R package
spBayesSurv for implementing the MCMC algorithms.

I Joint work w/ Haiming Zhou at U. Northern Illinois.
I Future work: marginal semiparametric models with spatial dependence

modeled through copulas; specialized MCMC for additive models w/
penalized B-splines and inclusion of pairwise interaction surfaces.

I Thanks for the invitation!
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