
Lecture 12: Introduction to Survival Analysis

In many biomedical studies, the outcome variable is a survival time, or more generally a

time to an event. We will describe some of the standard tools for analyzing survival data.

Most studies of survival last a few years, and at completion many subjects may still be

alive. For those individuals, the actual survival time is not known – all we know is how long

they survived from their entry in the study. Similarly, certain individuals may drop out from

the study or be lost to follow-up. Each of these cases is said to be censored, and the recorded

time for such individuals is their time until the censoring event.

Example: HPA staining for breast cancer survival

We consider data from a retrospective study of 45 women who had surgery for breast cancer.

Tumor cells, surgically removed from each woman, were classified according to the results

of staining on a marker taken from the Roman snail, the Helix pomatia agglutinin (HPA).

The marker binds to cancer cells associated with metastasis to nearby lymph nodes. Upon

microscopic examination, the cancer cells stained with HPA are classified as positive, cor-

responding to a tumor with the potential for metastasis, or negative. It is of interest to

determine the relationship of HPA staining and the survival of women with breast cancer.

The survival times in months Ti and staining results (xi = 0 for negative and xi =

1 for positive) for the 45 women are presented in the following table. Also included is

a censoring indicator di. Contrary to the normal definition of an indicator variable, the

censoring indicator is zero if the observation is right-censored, and one if the observation

is uncensored. So it’s really a non-censoring indicator! A woman’s survival time was right

censored if the woman was alive at the end of the study or if the woman died of causes

unrelated to breast cancer.
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T x d T x d T x d T x d T x d T x d T x d T x d T x d T x d
-------------------------------------------------------------------------------
23 0 1 47 0 1 69 0 1 70 0 0 71 0 0 100 0 0 101 0 0 148 0 1 181 0 1 198 0 0

208 0 0 212 0 0 224 0 0 5 1 1 8 1 1 10 1 1 13 1 1 18 1 1 24 1 1 26 1 1
26 1 1 31 1 1 35 1 1 40 1 1 41 1 1 48 1 1 50 1 1 59 1 1 61 1 1 68 1 1
71 1 1 76 1 0 105 1 0 107 1 0 109 1 0 113 1 1 116 1 0 118 1 1 143 1 1

154 1 0 162 1 0 188 1 0 212 1 0 217 1 0 225 1 0

This is the format the data should be in to work with it in Stata, but succinctly, the

sorted survival times for the negative stained women are

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where ∗ denotes a right-censored observation. The survival times for the positive stained

group are

5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 76∗, 105∗,

107∗, 109∗, 113, 116∗, 118, 143, 154∗, 162∗, 188∗, 212∗, 217∗, 225∗.

In the breast cancer study, 8 individuals in the negative stained group, and 11 in the

positive stained group are censored. Although it is common for studies to have right-censored

cases, such as we have here, left-censoring and interval-censoring are found in other clinical

studies.

Survival Curves

A first step in survival analysis is often to estimate the survival curve, or survival time

distribution. Suppose we are considering a single (homogeneous) population. Let T be

the survival time (from some reference point) for a randomly selected individual from the

population. Where t is any arbitrary positive value, the survival time distribution is defined

to be

S(t) = Pr(T ≥ t)

= probability randomly selected individual survives at least until time t

= proportion of population that survives at least until time t.

The function might look like Figure 1.
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Figure 1: S(t) versus t; median survival time for population is 5.

Estimating the Survival Curve

Case I: No censoring

If we have a random sample from the population, we use the empirical survival function:

Ŝ(t) = sample proportion that survive at least until time t

to estimate S(t). This is easy to compute and plot as a function of t.

Suppose we have a sample of 5 survival times (in days): 5, 8, 20, 30, and 33. Ŝ(t) has

“jumps” of size 1/5 (i.e. 1 divided by the sample size) at each survival time; see Figure 2.

Case II: Right censoring

Recall the data on the survival of women with breast cancer whose cells were negatively

stained with HPA:

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where the ∗ superscript identifies a right-censored observation.
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Figure 2: Empirical survival function Ŝ(t) for the data 5, 8, 20, 30, and 33.

The following algorithm describes the Kaplan-Meier (KM) method for estimating the

survival curve (Kaplan-Meier product-limit estimate).

1. Identify times for non-censored cases 0 = t0 < t1 < t2 < · · · < tr. That is, t1 is

the smallest non-censored survival time, t2 is the second smallest, et cetera. For the

example r = 5 and t0 = 0, t1 = 23, t2 = 47, t3 = 69, t4 = 148, and t5 = 181.

2. For the jth interval, where tj−1 ≤ t < tj, evaluate

nj = number at risk (of dying) at beginning of interval,

dj = number of deaths in interval,

nj − dj

nj

= estimated probability of surviving past tj−1,

given you are at risk at time tj−1

= P̂ (T ≥ tj−1|T ≥ tj−2).
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Figure 3: KM survival curves for positively and negatively stained groups.

3. For tj−1 ≤ t < tj,

Ŝ(t) = P̂ (T ≥ t)

= P̂ (T ≥ tj−1|T ≥ tj−2)×
P̂ (T ≥ tj−2|T ≥ tj−3)× · · · ×
P̂ (T ≥ t1|T ≥ t0)

=
nj − dj

nj

× nj−1 − dj−1

nj−1

× · · · × n1 − d1

n1

.

Remark: Censored observations are taken into account by being treated as cases at risk at

the beginning of the interval in which they fail.

To illustrate the calculation for our data, consider the table:
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j Interval nj dj
nj − dj

nj

Ŝ(t)

1 0 ≤ t < 23 13 0
13− 0

13
= 1 1.0

2 23 ≤ t < 47 13 1
13− 1

13
=

12

13
•
= 0.923 1.0× 0.923 = 0.923

3 47 ≤ t < 69 12 1
12− 1

12
=

11

12
•
= 0.917 0.923× 0.917 = 0.846

4 69 ≤ t < 148 11 1
10

11
•
= 0.909 0.846× 0.909 = 0.769

5 148 ≤ t < 181 6 1
5

6
•
= 0.833 0.769× 0.833 = 0.641

6 181 ≤ t 5 1
4

5
= 0.8 0.641× 0.8 = 0.513

To obtain the KM estimate in Stata we must declare the data we are working with to be

survival data. Stata then uses the survival time variable and the censoring variable together

in analyses. For the breast cancer data we first read in the variables using something like

infile time group cens using c:/breast.txt. We declare the data to be survival data

using stset time, failure(cens). Finally we obtain the KM survival curve estimates

across the two groups with the command sts graph, by(group). In Figure 3 we have a

picture of Ŝ(t) from the negatively stained group as well as the estimate from the positively

stained group. Note that the negatively stained group tends to live longer, as we would

expect. The estimated quartiles for survival across the two groups are obtained by stsum,

by(group). Annotated output follows; for example, we see that the median survival in the

positive stained group is estimated to be 68 months.

| no. of |------ Survival time -----|
group | subjects 25% 50% 75%
---------+----------------------------------------------

0 | 13 148 . .
1 | 32 31 68 .

---------+----------------------------------------------
total | 45 40 113 .

Some remarks:

• The estimated survival curve “drops to zero” only if the last case is not censored.

• The KM curve allows us to estimate percentiles of the survival distribution, with a

primary interest being the median survival time (50th percentile). In the example
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above, the 90th percentile is approximately 47 months (i.e. we estimate that 90% of

the population will survive at least 47 months). The median cannot be estimated here

– all we can say is that we estimate the median to be at least 181 months.

• The KM estimate is the usual empirical estimate if no cases are censored.

• Statistical methods are available to

– Estimate the mean survival time.

– Get a C.I. for the survival curve.

– Compare survival curves across groups – you can think of this as the censored

data analogue of (non-parametric) ANOVA.

The Cox Proportional Hazards Model

The risk of failing at time t is defined to be the probability of an individual dying in the

“next instant” (e.g. in a time frame of length ∆) given this individual has survived at least

until time t:

P (t ≤ T < t + ∆|t ≤ T ).

We define the hazard function h(t) such that for small enough ∆,

P (t ≤ T < t + ∆|t ≤ T ) = h(t)∆.

The hazard function is proportional to the instantaneous “risk of failing” at any time t, given

that an individual has lived at least to time t.

Now consider two individuals, 1 and 2, each with their own hazard functions h1(t) and

h2(t). If we assume that one individual’s instantaneous rate of failing is a constant multiple

of the other’s, i.e. h2(t) = ah1(t) for some constant a, then these two individuals have

proportional hazard functions. Figure 4 shows an example of this phenomenon where the

hazard ratio is 1/2.

Proportional hazards may or may not be a reasonable assumption to make. For example,

consider two people, roughly the same age and demographic except that at the age of 20,
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Figure 4: An example of proportional hazard functions; here the constant of proportionality

is 0.5.

person 2 takes up smoking while person 1 does not. You will hopefully agree with me that

initially, the smoker and the non-smoker will most likely have identical hazards. As the years

roll by, and smoking takes its toll, we would think that the smoker’s instantaneous rate of

failing, which is proportional to the probability of dying in the next minute, say, will increase

relative to the hazard for the non-smoker. In this example proportional hazards probably is

an unreasonable assumption.

The proportional hazards model generalizes the above concept for n individuals, each

with their own covariate value xi or set of p covariate values xi = (xi1, xi2, . . . , xip). In the

case where the n individuals only have one covariate, the model stipulates for individuals i

and j, with a hazard functions hi(t) and hj(t) respectively, that

hi(t)e
−βxi = hj(t)e

−βxj .

Note that this implies
hi(t)

hj(t)
=

eβxi

eβxj
= eβ(xi−xj).
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Here, eβ(xi−xj) is the relative risk of instantaneous failure at any time t for individuals

i and j. That is the power of the proportional hazards assumption: the relative risk of

dying for two individuals is a simple function of the model parameters and holds for all

t, independent of the value of t. If individual i has covariate value x + 1 and individual

j has covariate value x, i.e. their covariate values only differ by 1 unit on the covariate

measurement scale, then
hi(t)

hj(t)
=

eβ(x+1)

eβx
= eβ.

Thus, eβ is the relative risk of failing in the next instant when we increase the covariate

by one unit. Note that if xi is a simple zero/one variable denoting which group individual i

falls into, then eβ is the relative risk of failing in the next instant for the group denoted by

xi = 1 versus xi = 0.

The breast cancer data are loaded with the commands infile time group cens using

c:/breast.txt and the Cox PH model is fit via cox time group, dead(cens). The sur-

vival time, followed by the predictor variable(s) is specified. The non-censoring indicator is

included in the subcommand dead. We obtain the following output:

------------------------------------------------------------------------
time |
cens | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------+----------------------------------------------------------------
group | .9080157 .5009228 1.81 0.070 -.0737749 1.889806

------------------------------------------------------------------------

We have an estimate of β̂ = 0.908 and the estimated relative risk is eβ̂ = e0.908 •
= 2.5.

That is, those with positive staining are estimated to have a risk of dying in the next

instant about 2.5 times as great as those with negative staining. Note that the p-value for

H0 : β = 0 is small but not significant at the 5% level. There is definitely some indication

that staining affects survival, with positive staining decreasing survival. A 95% C.I. for

the risk may be obtained by exponentiating the endpoints for the C.I. for β. Here, we

estimate the relative risk of expiring (for positive compared to negative staining) to be

within (e−0.073, e1.89) = (0.93, 6.62) with 95% confidence.

Remark: The hazard function for individual i can be defined to be a scale multiple exiβ of

a baseline hazard function denoted h0(t). The model may be recast as
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hi(t) = h(t|xi) = exiβh0(t). This baseline hazard function h0(t) and β thus completely

determine the model. The baseline hazard h0(t) may be estimated from the data as well as

survival curves, median and mean survival, et cetera, for any covariate value x. These sorts

of inferences are quite easy to get out of Stata but a bit beyond what is comfortable to

cover in this class.

A final example

We examine a data set consisting of the time spent running on a treadmill for 14 people

aged 15 and older. Each subject’s gender and age were recorded. It is of interest to the

experimenter how age and gender affects ones endurance.

We define a numeric indicator variable for the gender variable by taking g to be 0 for a

male subject and 1 for a female subject. When fitting the PH model with gender and age

as main effects,

h(t|age, g) = eageβ1+gβ2h0(t),

the baseline group (i.e. those with covariates age = 0 and g = 0, and thus a hazard function

of e0β1+0β2 = e0h0(t) = h0(t)) consists of males of age zero, which is not interpretable in

this context. Observations were censored due to a subject having to leave the treadmill for

reasons other than being tired. The data follow:

Obs gender age minutes cens weight g
-------------------------------------------------------

1 male 34 16 1 215 0
2 male 15 35 0 135 0
3 female 22 55 0 145 1
4 female 18 95 1 97 1
5 male 18 55 0 225 0
6 female 32 55 1 185 1
7 female 37 25 1 155 1
8 female 67 15 1 142 1
9 female 55 22 1 132 1

10 male 55 13 1 183 0
11 male 62 13 1 168 0
12 female 33 57 0 132 1
13 female 17 52 0 112 1
14 male 24 54 1 175 0

The fit of the model with only gender h(t|g) = egβ1h0(t):

------------------------------------------------------------------------------
minutes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
g | -.6786811 .7161483 -0.95 0.343 -2.082306 .7249439

------------------------------------------------------------------------------
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The test for a gender effect yields a p-value of 0.343. We would accept at any reasonable

significance level that there is not a gender effect. The estimate of β1 is β̂1 = −0.679 so the

fitted model is h(t|g) = e−0.678gh0(t) implying that h(t|g = 1) = 0.507h(t|g = 0) and finally

h(t|g = 1)/h(t|g = 0) = 0.507 for all t. That is, the probability of a randomly picked woman

failing (stepping off the treadmill) in the next second is estimated be half the probability of

a randomly picked male.

Rephrased, we see that, assuming proportional hazards is reasonable, females are about

half (the hazard ratio is e−0.679 = 0.507) as likely to step off the treadmill at any instant

versus males. We obtain an approximate 95% C.I. for this ratio by first considering the 95%

C.I. for the regression effect: (-2.08, 0.72). Exponentiate both endpoints to obtain a 95%

C.I. for the hazard ratio: (0.12, 2.07). The hazard ratio interval includes one (no difference

in the hazard functions for males and females) because the regression effect interval includes

zero.

Let’s look at the model fit with only age h(t|age) = eageβ1h0(t):

------------------------------------------------------------------------------
minutes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | .1116606 .0385688 2.90 0.004 .0360672 .187254

------------------------------------------------------------------------------

A year from now, a randomly selected individual will be e0.1117 = 1.118 times as likely

to step off the treadmill after 15 minutes (or any amount of time) than now. In ten years it

will be 1.11810 = 3.05 times as likely. When we fit the model with both of these predictors

h(t|age, g) = eageβ1+gβ2h0(t) = eageβ1egβ2h0(t) we see that estimated regression effects, and

therefore model interpretation, change somewhat:

------------------------------------------------------------------------------
minutes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
g | -3.551859 1.57856 -2.25 0.024 -6.645779 -.4579388

age | .2186267 .0855601 2.56 0.011 .050932 .3863214
------------------------------------------------------------------------------

At a given age, a random male running alongside a random female is about 1/e−3.55 =

1/0.029 = 35 times as likely to step off the treadmill at any time. A woman 20 years

older than another woman is about e0.218×20 = 80 times as likely to step off compared to
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the younger woman. Note that in the presence of age, gender is now significant, although

marginally, gender is not a significant factor. In this case age is said to be a suppressor

variable. The Stata commands for this analysis are:

infile age minutes cens weight g1 using c:/running.txt
cox minutes g1, dead(cens)
cox minutes age, dead(cens)
cox minutes g1 age, dead(cens)

In the model fit that included an interaction between age and gender, the interaction term

was not significant.
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