Logistic regression

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

- Sometimes we wish to predict a categorical response Y using a quantitive variable X.
- Consider Y to be binary (0 = failure, 1 = success)
- Logistic regression is used to model how the probability of success Pr{Y = 1} depends on X.
- Rather than normally distributed data we now have binomially distributed data.

- Esophageal cancer is a serious and very aggressive disease.
- n = 31 patients with esophageal cancer studied; looked at size of patient's tumor & whether cancer had spread (metastasized) to lymph nodes.
- Two variables. Y = 1 if cancer spread to lymph notes, Y = 0 if not. X is maximum dimension (cm) of esophagus tumor.

Esophageal Cancer: Example 12.8.5

Table 12.8.3 Esophageal cancer data									
Patient number	Tumor size (cm), X	Lymph node metastasis, Y	Patient number	Tumor size (cm), X	Lymph node metastasis, Y				
1	6.5	1	17	6.2	1				
2	6.3	0	18	2.0	0				
3	3.8	1	19	9.0	1				
4	7.5	1	20	4.0	0				
5	4.5	1	21	3.0	1				
6	3.5	1	22	6.0	1				
7	4.0	0	23	4.0	0				
8	3.7	0	24	4.0	0				
9	6.3	1	25	4.0	0				
10	4.2	1	26	5.0	1				
11	8.0	0	27	9.0	1				
12	5.2	1	28	4.5	1				
13	5.0	1	29	3.0	0				
14	2.5	0	30	3.0	1				
15	7.0	1	31	1.7	0				
16	5.3	0							

Plot of Y versus X

Let's group the predictor "Tumor size" into bins (like a histogram) and compute sample proportions for each bin.

Table 12.8.4 Esophageal cancer data in groups								
Size range	Points with $Y = 1$	Points with $Y = 0$	Fraction Y = 1	$\begin{array}{l} \text{Proportion} \\ Y = 1 \end{array}$				
(1.5, 3.0]	2	4	2/6	0.33				
(3.0, 4.5]	5	6	5/11	0.45				
(4.5, 6.0]	4	1	4/5	0.80				
(6.0, 7.5]	5	1	5/6	0.83				
(7.5, 9.0]	2	1	2/3	0.67				

Probability of metastization roughly increases with tumor size. Let's look at a plot...

Plot of sample proportions

Forms a "lazy S" curve.

• The logistic regression model for the probability of success is

$$\mathsf{Pr}\{Y=1\} = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

- R can give us estimates b_0 (for β_0) and b_1 (for β_1), as well as standard errors SE_{b_0} and SE_{b_1} using the function glm (instead of lm as in regular regression).
- Recall: exp(x) = e^x where e ≈ 2.718282, and log(x) is the natural logarithm; also log(e^x) = x.

R code for cancer data

```
size=c(6.5,6.3,3.8,7.5,4.5,3.5,4.0,3.7,6.3,4.2,8.0,5.2,
      5.0,2.5,7.0,5.3,6.2,2.0,9.0,4.0,3.0,6.0,4.0,4.0,
             4.0.5.0.9.0.4.5.3.0.3.0.1.7
0, 0, 0, 1, 1, 1, 0, 1, 0
> fit=glm(Y<sup>*</sup>size,family=binomial)
> summary(fit)
Call
glm(formula = Y ~ size, family = binomial)
Deviance Residuals:
   Min
            10 Median
                            30
                                   Max
-2.0657 -1.1288 0.5657 0.9844 1.4185
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.0858 1.2256 -1.702 0.0888
          0.5117 0.2561 1.998 0.0457
size
```

Building a model

• The estimated probability of whether cancer metastisizes is

$$\mathsf{Pr}\{Y=1\} = \frac{e^{-2.086+0.5117} \text{ size}}{1+e^{-2.086+0.5117} \text{ size}}.$$

This is the same as:

$$\log\left(\frac{\Pr\{Y=1\}}{1-\Pr\{Y=1\}}\right) = -2.086 + 0.5117 \text{ size},$$

the log-odds of metastization.

- Here $b_0 = -2.086$ estimates β_0 and $b_1 = 0.5117$ estimates β_1 .
- We test $H_0: \beta_1 = 0$ using the P-value from the table; here P-value= 0.0457 < 0.05 so we reject $H_0: \beta_1 = 0$ at the 5% level. There is a significant, positive $(b_1 > 0)$ association between tumor size and metastization.

Smooth curve for probability of 'success'

 $Pr{Y = 1}$ as a function of tumor size.

- Using the log-odds formula on slide 10, we can show that e^{b_1} is how the odds of success changes when X is increased by one unit.
- For example, when we increase the tumor size by 1 cm, the odds of metastization increases by a factor of e^{0.5117} = 1.668, i.e. increases by 67%.
- i.e. $e^{0.5117} \approx 1.7$ is an odds ratio.
- If we increase tumor size by 2 cm then the odds of metastization increases by $1.7^2 \approx 2.8$ times, or 180%.

Predicted values

Predicted probability at each X-value and sample proportions from windows. Model fits okay.

Coefficients:

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	-2.0858	1.2256	-1.702	0.0888
size	0.5117	0.2561	1.998	0.0457

- Does the tumor size increase or decrease the odds of having lymph node metastasis *Y*?
- Is the effect of tumor size significant?
- Find, and interpret a 95% confidence interval for the ratio of odds of Y when the tumor size is increased by 1 cm.

- The regression coefficient is positive, so increasing the tumor size increases the odds of metastization. This makes intuitive sense. The odds of spreading are increased by a factor of $e^{0.5117} = 1.668$ for every *cm* increase in tumor size.
- The effect is (just) significant, we reject H₀ : β₁ at the 5% level because 0.0457 < 0.05.

• A 95% confidence interval for the log odds ratio is

 $b_1 \pm 1.96SE_{b_1} = 0.5117 \pm 1.96(0.2561) = (0.010, 1.014).$

• Exponentiating gives the 95% confidence interval for how the odds change when increasing the size by 1 *cm*: $(e^{0.010}, e^{1.014}) = (1.0097, 2.7557).$