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Survival analysis

In many biomedical studies, the outcome variable is a survival
time, or more generally a time to an event. We will describe
some of the standard tools for analyzing survival data.

Most studies of survival last a few years, and at completion
many subjects may still be alive. For those individuals, the
actual survival time is not known – all we know is how long
they survived from their entry in the study. Also, some
individuals may drop out from the study early.

Each of these cases is said to be censored; all’s we know is
that the event hadn’t happened yet the last time we saw them.
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HPA staining and breast cancer

We consider data from a retrospective study of 45 women
who had surgery for breast cancer. Tumor cells, surgically
removed from each woman, were classified according to the
results of staining on a marker taken from the Roman snail,
the Helix pomatia agglutinin (HPA).

The survival times in months ti and staining results (xi = 0
for negative and xi = 1 for positive) for the 45 women are
given. Also included is a censoring indicator di .

Contrary to the normal definition of an indicator variable, the
censoring indicator is zero if the observation is right-censored,
and one if the observation is uncensored. So it’s really a
non-censoring indicator!
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HPA staining and breast cancer

A woman’s survival time was right censored if the woman was
alive at the end of the study or if the woman died of causes
unrelated to breast cancer.

A first step in survival analysis is often to estimate the
survival curve, or survival time distribution.

Where t > 0, the survival function is S(t) = Pr{T > t}, the
probability that a randomly selected individual survives at
least until time t. This is also the proportion of population
that survives until time t or later.

S(t) = Pr{T > t} is called the survival function.

4 / 14



The survival time data

x = 0 (negative) staining:
23; 47; 69; 70∗; 71∗; 100∗; 101∗; 148; 181; 198∗; 208∗; 212∗; 224∗
x = 1 (positive) staining:
5; 8; 10; 13; 18; 24; 26; 26; 31; 35; 40; 41; 48; 50; 59; 61; 68;
71; 76∗; 105∗; 107∗; 109∗; 113; 116∗; 118; 143; 154∗; 162∗; 188∗;
212∗; 217∗; 225∗
* indicates right-censoring.

What is the estimate of survival function for each group?
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Censoring and survival

Case I: No censoring
If we have a random sample from the population, we can use
the empirical survival function; this is the sample proportion
that survive at least until time t – very easy to compute.

But if there is censoring then this is a bad estimate.
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Empirical survival function

Short-dashed is negative; long-dashed is positive stained.
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Kaplan-Meier estimator

Case II: Right censoring
We can estimate the survival function using the Kaplan-Meier
estimator

Ŝ(t) =
nj − dj

nj
×

nj−1 − dj−1

nj−1
× . . .× n1 − d1

n1

where we group the data into intervals tj−1 < t < tj , where nj

is the number at risk of dying at the beginning of the interval,
and dj is the number that die in the interval.

Note
nj−dj

nj
is the estimated probability of surviving past tj

given you have survived past tj−1.
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In R

> library(survival)

> timeneg = c(23,47,69,70,71,100,101,148,181,198,208,212,224)

> censneg = c(1,1,1,0,0,0,0,1,1,0,0,0,0)

> timepos = c(5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 76, 105,

+ 107, 109, 113, 116, 118, 143, 154, 162, 188, 212, 217, 225)

> censpos = c( rep(1,times=18),0,0,0,0,1,0,1,1,0,0,0,0,0,0)

> group = as.factor( c( rep("neg",times=13), rep("pos",times=32) ) )

> time = c(timeneg,timepos)

> cens = c(censneg,censpos)

> plot( survfit( Surv(time) ~ group ) , lty=3:2)

> fit = survfit( Surv(time,cens) ~ group )

> plot(fit,lty=3:2)

> survdiff( Surv(time,cens) ~ group )

Call:

survdiff(formula = Surv(time, cens) ~ group)

N Observed Expected (O-E)^2/E (O-E)^2/V

group=neg 13 5 9.57 2.18 3.51

group=pos 32 21 16.43 1.27 3.51

Chisq= 3.5 on 1 degrees of freedom, p= 0.0608
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Kaplan-Meier estimates

Short-dashed is negative; long-dashed is positive stained.
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Cox’s proportional hazards

We define the hazard function h(t) such that for small enough
∆,

Pr{t < T < t + ∆|t ≤ T} = h(t)∆.

Cox’s proportional hazards model states that the hazard in
one group is h(t) and the hazard in the other group is h(t)eβ.

We want to test H0 : β = 0

We will use the HPA staining example.
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Cox PH

> coxph( Surv(time,cens) ~ group )

Call:

coxph(formula = Surv(time, cens) ~ group)

coef exp(coef) se(coef) z p

grouppos 0.909 2.48 0.501 1.82 0.069
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Interpretation

The estimated coefficient is positive, so the staining result
x = 1 increases the hazard.

Note that eβ is the relative risk of failing in the next instant
for the group denoted by x = 1 versus x = 0.

The relative risk in the two groups is e0.909 = 2.48

The effect is (not quite) significant, we do not reject
H0 : β = 0 at the 5% level because 0.069 > 0.05.

13 / 14



Confidence interval

A 95% confidence interval for the log relative risk is

0.909± 1.96SEb1 = 0.909± 1.96(0.501) = (−0.073, 1.891).

Exponentiating gives the 95% confidence interval for the
relative risk: (e−0.073, e1.891) = (0.930, 6.626).
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