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Survival analysis

@ In many biomedical studies, the outcome variable is a survival
time, or more generally a time to an event. We will describe
some of the standard tools for analyzing survival data.

@ Most studies of survival last a few years, and at completion
many subjects may still be alive. For those individuals, the
actual survival time is not known — all we know is how long
they survived from their entry in the study. Also, some
individuals may drop out from the study early.

@ Each of these cases is said to be censored; all's we know is
that the event hadn't happened yet the last time we saw them.
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HPA staining and breast cancer

o We consider data from a retrospective study of 45 women
who had surgery for breast cancer. Tumor cells, surgically
removed from each woman, were classified according to the
results of staining on a marker taken from the Roman snail,
the Helix pomatia agglutinin (HPA).

@ The survival times in months t; and staining results (x; =0
for negative and x; = 1 for positive) for the 45 women are
given. Also included is a censoring indicator d;.

@ Contrary to the normal definition of an indicator variable, the
censoring indicator is zero if the observation is right-censored,
and one if the observation is uncensored. So it's really a
non-censoring indicator!



HPA staining and breast cancer

@ A woman's survival time was right censored if the woman was
alive at the end of the study or if the woman died of causes
unrelated to breast cancer.

@ A first step in survival analysis is often to estimate the
survival curve, or survival time distribution.

@ Where t > 0, the survival function is S(t) = Pr{T > t}, the
probability that a randomly selected individual survives at

least until time t. This is also the proportion of population
that survives until time t or later.

e S(t) =Pr{T > t} is called the survival function.



The survival time data

e x = 0 (negative) staining:
23:47:69; 70%; 71%; 100%; 101%; 148; 181; 198x%; 208x; 212x; 224x%

e x =1 (positive) staining:
5;8;10;13;18; 24 26; 26; 31; 35; 40; 41; 48;50; 59; 61; 68;
71;76%; 105%; 107%*; 109%; 113; 116%; 118; 143; 154%; 162x*; 188x;
212x%; 217%; 225%

@ * indicates right-censoring.

@ What is the estimate of survival function for each group?



Censoring and survival

e Case I: No censoring
If we have a random sample from the population, we can use
the empirical survival function; this is the sample proportion
that survive at least until time t — very easy to compute.

@ But if there is censoring then this is a bad estimate.
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Empirical survival function
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Short-dashed is negative; long-dashed is positive stained.



Kaplan-Meier estimator

e Case lI: Right censoring
We can estimate the survival function using the Kaplan-Meier
estimator
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where we group the data into intervals t;_; < t < t;, where n;
is the number at risk of dying at the beginning of the interval,
and dj is the number that die in the interval.

n,—d: . . . ..
e Note ' is the estimated probability of surviving past t;

J
given you have survived past tj_;.



In R

library(survival)

timeneg = c(23,47,69,70,71,100,101,148,181,198,208,212,224)
censneg = ¢(4,1,1,0,0,0,0,1,1,0,0,0,0)

timepos = c(5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 76, 105,
107, 109, 113, 116, 118, 143, 154, 162, 188, 212, 217, 225)
censpos = c( rep(1,times=18),0,0,0,0,1,0,1,1,0,0,0,0,0,0)

group = as.factor( c( rep("neg",times=13), rep("pos",times=32) ) )
time = c(timeneg,timepos)

cens = c(censneg,censpos)

plot( survfit( Surv(time) ~ group ) , lty=3:2)

fit = survfit( Surv(time,cens) ~ group )

plot(fit,1ty=3:2)

survdiff ( Surv(time,cens) ~ group )

Call:

survdiff (formula = Surv(time, cens) ~ group)

VVVVVVVV+VVVY

N Observed Expected (0-E)"2/E (0-E)~2/V
group=neg 13 5 9.57 2.18 3.51
group=pos 32 21 16.43 1.27 3.51

Chisgq= 3.5 on 1 degrees of freedom, p= 0.0608



Kaplan-Meier estimates

0.4

02

0.0

0 50 100 150 200

Short-dashed is negative; long-dashed is positive stained.
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Cox's proportional hazards

e We define the hazard function h(t) such that for small enough
Ay
Pr{t < T <t+A|t < T} =h(t)A.

@ Cox's proportional hazards model states that the hazard in
one group is h(t) and the hazard in the other group is h(t)e’.
@ We want to test Hy : 6 =0

@ We will use the HPA staining example.
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Cox PH

> coxph( Surv(time,cens) ~ group )
Call:
coxph(formula = Surv(time, cens) ~ group)

coef exp(coef) se(coef) z
grouppos 0.909 2.48 0.501 1.82 0.069
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Interpretation

@ The estimated coefficient is positive, so the staining result
x = 1 increases the hazard.

o Note that e is the relative risk of failing in the next instant
for the group denoted by x = 1 versus x = 0.

o The relative risk in the two groups is €299 = 2.48

@ The effect is (not quite) significant, we do not reject
Hp : 8 =0 at the 5% level because 0.069 > 0.05.
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Confidence interval

@ A 95% confidence interval for the log relative risk is
0.909 £+ 1.96SE,, = 0.909 + 1.96(0.501) = (—0.073,1.891).

@ Exponentiating gives the 95% confidence interval for the
relative risk: (e~0973, 1-891) — (0.930, 6.626).
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