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3.1 Definition

Completely randomized design (CRD) recipe:

1 Fix sample sizes n1, n2, . . . , ng with n1 + n2 + · · · + ng = N.

2 Randomly assign n1 units to treatment 1, n2 units to treatment 2, etc.

All possible arrangements of the N units into g groups with sizes n1 though ng equally
likely.

Selection of treatments, experimental units, and responses also need considerable
thought w/ scientists conducting experiment.



Good place to start!

This is the basic experimental design; everything else is a modification.

The CRD is

Easiest to do.

Easiest to analyze.

Most resilient when things go wrong.

Often sufficient.

Consider a CRD first when designing.



Acid rain and birch seedlings

Wood and Bormann (1974) studied the effect of acid rain on trees. “Clean”
precipitation has pH in the 5.0 to 5.5 range; precipitation pH in northern New
Hampshire in the 3.0 to 4.0 range. Does this harm trees? If so, does harm extent
change w/ rain pH?

One experiment: N = 240 six-week-old yellow birch seedlings randomly divided into
five groups of ni = 48; seedlings in each group got acid mist treatment 6 hours a week
for 17 weeks at pH’s: 4.7, 4.0, 3.3, 3.0, and 2.3. Seedlings treated identically except
for treatment. Total plant weight response after 17 weeks.



Much thought goes into experiment!

Scientists suspected that damage might vary by pH level, plant developmental
stage, and plant species, among other things.

This experiment only addresses pH level (other experiments were conducted...)

Many factors affect tree growth; experiment controlled soil type, seed source, and
amounts of light, water, and fertilizer.

Desired treatment was real acid rain; available (controllable) treatment was
synthetic acid rain consisting of distilled water and sulfuric acid.

Experiment used yellow birch seedlings; other species or more mature trees?

Total plant weight is an important response, but other responses (possibly equally
important) are also available.

Investigators boiled broad question down to a workable experiment using artificial
acid rain on seedlings of a single species under controlled conditions.

Much nonstatistical background work and compromise goes into the planning
even simple experiments.



Resin lifetimes

Nelson (1990) gave an example where the goal was to estimate the lifetime (in hours)
of an encapsulating resin for gold-aluminum bonds in integrated circuits operating at
120oC. Lifetime very long; accelerated tests use more extreme temperatures (higher)
to induce failure quickly; then interference extrapolates to 120oC.

N = 37 units were assigned at random to one of five different temperature stresses:
175oC, 194oC, 213oC, 231oC, and 250oC.

Choice of units clear: integrated circuits with the resin bond of interest.

Choice of treatments, however, depended on knowing that temperature stress reduced
resin bond lifetime. The actual choice of temperatures probably benefited from
knowledge of the results of previous similar experiments.

Experimental design combines subject matter knowledge w/ statistical methods.



Trebuchet projectile distance

How do sling length and size of counterweight affect the throw distance of a trebuchet?

Randomly assign N = 27 throws to the nine combinations of three lengths and three
weights, with three throws per combination.

The response is distance projectile travels; want to maximize this!

Leads to consideration of response surfaces (end of book).



Experiment small...



Build big!



3.2 Preliminary exploratory analysis

It is always a good idea to simply look at your data before modeling.

For a CRD we have data by group; therefore looking at side-by-side boxplots, and
summary statistics by group is a good idea.

Gives an idea about: normality within groups, outlying observations, skew, etc. Also
gives us an idea about how distributions change (and their means/medians) across
groups.

Ask yourself: are data approximately normal? Are the variances roughly constant?



Resins in R

resin=read.table("http://users.stat.umn.edu/~gary/book/fcdae.data/exmpl3.2",header=T)

resin # data from website slightly different than in library ’oehlert’

colnames(resin)=c("temp","logTime") # column names now match

resin[,1]=c(rep(175,8),rep(194,8),rep(213,8),rep(231,7),rep(250,6))

boxplot(logTime~temp,data=resin) # side-by-side boxplots

boxplot(logTime~temp,data=resin,xlab="Temperature",ylab=expression(log[10](hours))) # bit nicer

summary(resin) # overall data set summary statistics

tapply(resin$logTime,resin$temp,summary) # by temperature

tapply(10^(resin$logTime),resin$temp,summary) # in hours



3.3 Models for mean response

Most of our inference is about treatment means:

Any evidence means are not all the same?

Which ones differ?

Any pattern in differences?

How can differences be described succinctly?

Estimates/confidence intervals of means and differences.

Sometimes variances are more interesting, or quantiles such as the median, or other
things like the number of modes.

Sometimes it is extremes that are of interest, e.g. minimum rainfall across a large area
after seeding a cloud.



Some plausible models for resin lifetime

yij is jth lifetime in hours from group i . Different models for mean:

yij = µ+ εij ,

yij = β0 + β1zi + εij

yij = β0 + β1zi + β2z2
i + εij

yij = µi + εij

Here, z1 = 175, z2 = 194, z3 = 213, z4 = 231, and z5 = 250. Each model is special
case of those that come after! Simpler models nested within more complicated (more
parameters) models.

All errors εij
iid∼ N(0, σ2).



Occam’s razor

We seek the simplest model consistent with the data.

“All treatments have the same mean” is simpler than
“Each treatment has its own mean.” If we cannot say that the complicated model is
needed, we take the simple model.

Sometimes simple explanatory model is necessary. “Treatment means vary linearly
with temperature” is simpler than “Each treatment has its own mean” or even
“Treatment means vary quadratically with temperature.” An explanatory model
(especially a simple one) helps us understand the data. In particular, regression models
allow us to extrapolate to temperatures not used in the experiment! The separate
means model does not allow extrapolation.



Model is gross approximation to reality

All models are wrong; some models are useful. — George Box

We do not believe any model is really true, but if the data are consistent with it, we
use it.



Comparing models

We gauge model fit by looking at the sum of squared residuals. We usually choose
model parameters so as to minimize the sum of squared residuals.

The total sum of squares in the data SST is the sum of the model or explained sum of
squares SSM plus the error or residual sum of squares SSE . For a fixed set of data, if
you change the model making one SS bigger, then the other must get smaller.

SST = SSM + SSE

Always,

SST =

g∑
i=1

ni∑
j=1

(yij − ȳ••)2,

where ȳ•• = 1
N

∑g
i=1

∑ni
j=1 yij is the mean of all observations. Represents total

variability in responses about an overall, common mean ȳ••.



Separate means model

For yij = µi + εij estimate µi by µ̂i = ȳi• = 1
ni

∑ni
j=1 yij the sample mean in the ith

group. Then

SSM =

g∑
i=1

ni∑
j=1

(ȳi• − ȳ••)2

is variability explained by allowing means to change w/ group.

SSE =

g∑
i=1

ni∑
j=1

(yij − ȳi•)2

is the slop that is left over, i.e. the variability within groups.

Calculus can show that µ̂i = ȳi• makes SSE =
∑g

i=1

∑ni
j=1(yij − µ̂i )

2 as small as
possible; µ̂i = ȳi• are called the least squares estimates of µi because they minimize
SSE . µ̂1, µ̂2, µ̂3, µ̂4, µ̂5 given by tapply(resin$logTime,resin$temp,mean).



Linear regression model

For yij = β0 + β1zi + εij estimate β0 and β1 by

β̂1 =
∑g

i=1

∑ni
j=1(zi−z̄)(yij−ȳ••)∑g

i=1

∑ni
j=1(zi−z̄)2

, β̂0 = ȳ•• − β̂1z̄ ,

where z̄ = 1
N

∑g
i=1

∑ni
j=1 zi . Then

SSM =

g∑
i=1

ni∑
j=1

(β̂0 + β̂1zi − ȳ••)2, SSE =

g∑
i=1

ni∑
j=1

(yij − [β̂0 + β̂1zi ])
2.

SSM is variability explained by allowing means to change linearly with temperature;
SSE is the slop that is left over, i.e. the variability not explained by the regression line.

Calculus shows that the least squares estimates β̂0 and β̂1 above make
SSE =

∑g
i=1

∑ni
j=1(yij − [β̂0 + β̂1zi ])

2 as small as possible. β̂0 and β̂1 given by
lm(resin$logTime∼resin$temp).



Nested models

“All treatment means are the same” is a special case of “Each treatment has its own
mean.” “Treatment means vary linearly with temperature” is a special case of
“Treatment means vary quadratically with temperature” and, indeed, of “Each
treatment has its own mean” as well.

We say that the special case model is included in the more complicated model, or
perhaps that it is a restriction of (a restricted version of) the more complicated model.

We sometimes say that the special case model is nested in the more complicated
model, but we will also use the descriptor “nested” in a different way later, so beware.



Nested models

When we have model A included in model B, then:

1 Model B (fit by LS) always fits at least as well as model A (fit by LS), and usually
fits better. LS = “least squares”, which minimizes the SSE for whatever model
you are fitting.

2 The SSE from model B cannot be larger than the SSE from model A, and is
almost always smaller.

3 Equivalently, the SSM for model B is always at least as large and almost always
larger than the SSM for model A.

4 The reduction in SSE going from A to B is the same as the increase in SSM going
from A to B.



ANOVA

The partitioning of the sums of squares is called Analysis of Variance, or ANOVA.

The special case model never fits as well as the larger model, but how do we decide
that it is good enough, that is, is consistent with the data?

The two basic approaches are:

Significance testing

Information Criteria



Significance testing

We will make an ANOVA table that has a row for the restricted model, a row for the
increment from the restricted model to the larger model, and a row for all of the
residual bits.

Each row in the table has a label, a sum of squares, a “degrees of freedom,” and a
“Mean square.”

Degrees of freedom count free parameters. If there are r1 parameters in the mean
structure of the simpler, nested model, and r2 parameters in the mean structure of the
larger model, then there are r2 − r1 parameters in the improvement from the small
model to the large model, and N − r2 parameters for residuals (error).

An MS is SS divided by DF.



ANOVA table for comparing two models

The generic table looks like this (SS1 is model SS for restricted model, and SS2 is
model SS for the large model):

Source SS DF MS

Model 1 SS1 r1 SS1/r1

Improvement from
Model 1 to Model 2 SS2 − SS1 r2 − r1 (SS2 − SS1)/(r2 − r1)

Error SSE N − r2 SSE/(N − r2)



Notation

There are simple formulae for elements of the ANOVA table for many designed
experiments.

Let yij be the jth response in treatment i . i = 1, 2, . . . , g and j = 1, 2, . . . , ni .

Let

ȳi• =

∑ni
j=1 yij

ni

be the mean response in the ith treatment, and let

ȳ•• =

∑g
i=1

∑ni
j=1 yij

N

be the grand mean response.



Most common ANOVA table

Suppose that the restricted model is the model that all treatments have the same
mean, and the larger model is the model that each treatment has its own mean. Then:
r1 = 1

r2 = g

SS1 = Nȳ 2
••

SS2 =
∑g

i=1 ni ȳ
2
i•

SS2 − SS1 =
∑g

i=1 ni (ȳi• − ȳ••)2

SSE =
∑g

i=1

∑ni
j=1(yij − ȳi•)2

and the ANOVA table is . . .



Basic ANOVA

The first four columns of the ANOVA table are:

Source SS DF MS

Overall mean Nȳ 2
•• 1

Between Treatments
∑g

i=1 ni (ȳi• − ȳ••)2 g − 1 SSTrt/(g − 1)

Error
∑g

i=1

∑ni
j=1(yij − ȳi•)2 N − g SSE/(N − g)

and the MS may be denoted MSE and MSTrt .

In fact, the line for the overall mean is so boring that it is usually left off. In R try
something like fit=lm(response∼factor(treatment)) followed by anova(fit) to
get the table.



ANOVA tables...

anova(f) tests a constant mean against whatever was fit in f.

anova(f1,f2) tests model f1 nested in f2.



Digression on Pythagorean Theorem

Note that
yij = ȳ•• + (ȳi• − ȳ••) + (yij − ȳi•)

Square both sides and add over all i and j and we get

g∑
i=1

ni∑
j=1

y 2
ij = Nȳ 2

•• +

g∑
i=1

ni (ȳi• − ȳ••)2 +

g∑
i=1

ni∑
j=1

(yij − ȳi•)2

plus a lot of sums of cross products. All those sums of cross products add to zero (the
three components of yij are perpendicular out in N-dimensional geometry so sums of
squares add up).



F statistic and test

The ANOVA is just algebra, albeit algebra with statistical intent. By assuming
yij ∼ N(µi , σ

2), we have
E (MSE ) = σ2

and if the restricted model is true we also have

E (MSTrt) = σ2

If the restricted model is not good enough its expectation is larger than σ2. This
means that

F = MSTrt/MSE

is a test statistic for comparing the restricted model to the full model; we reject the
null if F is too big.



F statistic and test

When the null is true and the normal distribution assumptions are correct, the F-test
follows an F-distribution with g − 1 and N − g df (df from numerator and denominator
MS). Reject the null that the single mean model is true when the p-value for the F-test
is too small.

We did the algebra for the single mean model and individual mean model, but the F
test is appropriate for general restricted models versus a containing model. It’s just
that the computations are not always so clean.



Resin, continued...

attach(resin) # don’t have to use resin$temp and resin$logTemp

logTime

temp

m1=lm(logTime~1) # one overall mean

m2=lm(logTime~temp) # linear in temp

m3=lm(logTime~temp+I(temp^2)) # quadratic in temp

m4=lm(logTime~factor(temp)) # separate means

anova(m1,m2) # linear better than constant mean?

anova(m2,m3) # quadratic better than linear?

anova(m4,m3) # separate means better than quadratic?

anova(m1,m2,m3,m4) # all three tests at once

summary(m4) # are alpha_i significantly different from zero?

anova(m4) # tests H0: alpha1=alpha2=alpha3=alpha4=alpha5=0



Information criteria

Akaike introduced the first information criterion, AIC.

Later Schwartz added a second one, BIC.

Now there are several more.

Information criteria include a measure of how well the data fit the model (smaller
being better) plus a penalty for using additional parameters.

Models with smaller values of AIC or BIC are better models.



Information criteria

Let L be the maximized likelihood for the data. This is the “probability” of the data
under the model, with the parameters chosen to make the probability as high as
possible. This likelihood model has k parameters that we can choose. Typically these
parameters are things like treatment means, or regression coefficients, or residual
variances.

We’ll say more later, but for now suffice it to say that big L is good.

AIC = −2 ln(L) + 2k

BIC = −2 ln(L) + ln(N)k



Information criteria

Choose a model with smaller AIC (or BIC).

In general, AIC tends to choose models with more parameters than we get from
significance testing, i.e., some things in the selected model might be “insignificant.”
The reverse tends to be true for BIC, especially for big data sets.

Except for very small data sets, BIC penalizes additional parameters more than AIC.
BIC thus tends to choose smaller models than AIC.

AIC tends to work better when all candidate models are approximate; BIC tends to
work better in large samples when one of the candidate models is really the right
model.



Resin, continued...

AIC(m1,m2,m3,m4)

BIC(m1,m2,m3,m4)

Both AIC and BIC pick the quadratic model.



Parameterizations for µi = E (yij)

There are many ways to describe/parameterize the same set of means.

Some parameterizations aid in interpretation.

They can all be different yet still correct, but you need to know which ones you’re
working with.



Parameterizations for µi = E (yij)

Consider the resin example.

Trt (oC ) 175 194 213 231 250 All data

Average 1.933 1.629 1.378 1.194 1.057 1.465
Count 8 8 8 7 6 37

If we have a single mean model, the only parameter is the overall mean µ. Our
estimate would be µ̂ = ȳ•• = 1.465.

In the separate means model, parameters are the group means, and the estimates
would be µ̂1 = ȳ1• = 1.933 and so on.



Parameterizations for µi = E (yij)

Sometimes we want to write
µi = µ∗ + αi

Where µ∗ is some kind of “central value” and αi is a treatment effect.

We always have αi = µi − µ∗ and α̂i = µ̂i − µ̂∗, but how do we define µ∗?

There are many ways but there three are common.



Parameterizations for µi = E (yij)

Define µ Equivalent constraint

µ∗ = µ1 α1 = 0

µ∗ =
∑

i µi

g

∑
i αi = 0

µ∗ =
∑

i niµi

N

∑
i niαi = 0

The first is the default in R and SAS, the second is the default in Minitab, and the
third is useful in hand calculations.

Model effects for
∑g

i=1 niαi = 0 can be obtained as α̂i = ȳi• − ȳ••, e.g.
tapply(response,treatment,mean)-mean(response).

The important things (µi − µj = αi − αj) are the same in all versions.

Care about µ in the single mean model; care about µi and αi − αj in the separate
means model.



Resin, continued...

# default in R is to set alpha1=0; first group is "control" to compare rest to

ftemp=factor(temp) # turn temperature into a factor

m4=lm(logTime~ftemp) # need factor or fits linear regression!

anova(m4) # are treatment means significantly different at alpha=0.05?

summary(m4) # how do other temps compare to 175 degrees C?

# getting sum-to-zero treatment effects: sum_i alpha_i =0

library(cfcdae) # if you got the package to load, otherwise:

source("http://people.stat.sc.edu/hansont/stat506/cfcdae.R")

m4=lm(logTime~ftemp,contrasts=list(ftemp="contr.sum"))

# function model.effects() part of cfcdae package

model.effects(m4,ftemp) # sum-to-zero!



Parameterizations for µi = E (yij)

What about polynomial models? Let zi be the temperature treatment for group i .
Here are some models

µi = β0

µi = β0 + β1zi

µi = β0 + β1zi + β2z2
i

µi = β0 + β1zi + β2z2
i + β3z3

i

µi = β0 + β1zi + β2z2
i + β3z3

i + β4z4
i

The first is the same as the single mean model, the last fits the same means as the
separate means model, and the others are intermediate.

Note that equivalently written parameters have different meanings (and different
values) in different models.



Parameterizations for µi = E (yij)

But we don’t even leave polynomials in peace. Consider

µi = β0 + β1[zi − 210.0811]

+ β2[z2
i − 422.9zi + 44043.5]

+ β3[z3
i − 636.4z2

i + 133812.3zi − 9294576.3]

This is equivalent to the cubic model on the last slide, but here the βi retain values
and meanings as we change linear to quadratic to cubic (and you can go higher).
These are orthogonal polynomials.



Moral of the story...

Parameters can be defined in many ways within a single mean structure.

Parameters are a means to an end.

Most parameters are arbitrary, so inference on parameters (as opposed to model
comparison or comparison of means) is also somewhat arbitrary.

R will compute the estimates as well as standard errors for various parameterizations,
polynomials, orthogonal polynomials, trigonometric series, and so on. They are done
correctly, but they retain the arbitrariness of their definition.



Resin, finished...

op4=lm(logTime~poly(temp,degree=4),data=resin)

op3=lm(logTime~poly(temp,degree=3),data=resin)

op2=lm(logTime~poly(temp,degree=2),data=resin)

op1=lm(logTime~poly(temp,degree=1),data=resin)

anova(op1,op2,op3,op4) # accept that quadratic (degree=2) is adquate

library(graphics) # can use matplot() function

pred.data=data.frame(temp=seq(120,250,1))

pred.int=predict(op2,pred.data,int="predict")

matplot(pred.data$temp,10^(pred.int),lty=c(1,2,2),col=c(1,2,2),type="l",xlab="temperature",

ylab="hours")

points(c(175,194,213,231,250),tapply(10^(resin$logTime),resin$temp,mean),pch=16)

poly() makes orthogonal polynomials in your variable. They are difficult to interpret
but not subject to collinearity. Regular polynomials give the exact same predictions.



Alternatives

Kruskall-Wallace is a nonparametric generalization of Mann-Whitney-Wilcoxin to more
than two groups. The Welch ANOVA adjusts the usual F test to allow non-constant
variance across groups; data are still assumed normal though. Can also do a type of
permutation test. Power transformations can be used to “coerce” data into a more
“normal” form, possibly with constant variance.

kruskal.test(logTime~temp) # Kruskall-Wallace nonparametric one-way ANOVA

oneway.test(logTime~temp) # Welch adjustment for non-constant variance

library(coin) # one type of permutation test

independence_test(logTime~factor(temp))

library(rcompanion) # pairwise comparisons after perm. test (for later)

pairwisePermutationTest(logTime,factor(temp),method="fdr")

# power transformations can help stablize variances and make observations more "normal"

library(MASS)

Time=10^logTime # original time in hours; why was log10(time) used in the first place?

boxplot(Time~temp) # Yikes!!!

boxcox(Time~factor(temp)) # lambda near 0 suggests log-transformation

boxplot(log10(Time)~temp) # That’s why!


