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Ties together several things we’ve discussed already...

The consideration of dichotomous tests results in a 2× 2
table!

Continuous tests can classify binary outcomes using logistic
regression.
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Two possibilities: diseased or not diseased

We assume a state loosely termed diseased D+ or not
diseased D−, but any event of interest works.

Examples:
D+ = cardiovascular disease
D+ = hepatitis B
D+ = Parkinson’s disease
D+ = recent use of illegal drugs

Notice shades of gray and differences in these outcomes.

Cardiovascular disease is an umbrella term and can be tested
for many different ways: exercise stress test, MRI, X-ray,
Echocardiogram, CT scan, PET, SPECT, plus various blood
tests. Usually diagnosis takes multiple tests into account.
Drug use is known to the person being tested!
Hepatitis B is either there or not.
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Binary tests

Binary tests: result in one of two outcomes, either T+ or T−.
Examples:

over the counter pregnancy tests

rapid strep test

cultures (either something grows or it doesn’t)

direct microscopic examination of body fluid (either see it or
not)

asking a potential employee if they’ve recently used illegal
drugs
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Continuous tests

Continuous tests: result in a number Y . Typically as the number
increases the likelihood of D+ increases.
Examples:

Enzyme-Linked ImmunoSorbent Assay (ELISA) measures an
inferred amount of antigen in a blood sample

minutes of briskly walking on a treadmill before discomfort

pathologist classifying a slide as (1) negative, (2) atypical
squamous hyperplasia, (3) carcinoma in situ (not
metastasized), (4) invasive carcinoma (metastasized)

Often a continuous test is made into a binary one by
dichotomizing:

T+⇔ Y > k and T− ⇔ Y ≤ k.
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Diagnostic screening

Binary tests
An individual from a population will fall into one of four categories:

(D+,T+), (D+,T−), (D−,T+), or (D−,T−).

These are ‘true positive’, ‘false negative’, ‘false positive’, and ‘true
negative’.
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Diagnostic screening

Two common measures of binary test accuracy are sensitivity and
specificity:

Se = Pr{T + |D+} Sp = Pr{T − |D−}.

How well does the test do identifying those that really are
D+? The sensitivity of a test, denoted Se, is the probability
that a diseased person tests positive.

How well does the test do identifying those that really are
D−? The test’s specificity is the probability that a
nondiseased person tests negative.

Note, gold standard tests have perfect sensitivity and specificity.
For example, western blot test for HIV; culture for strep.
A measure for dichotomized tests that considers sensitivity and
specificity over all possible cutoffs k will be discussed shortly.
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Example: Rapid strep test

Sheeler et al. (2002) describe a modest prospective trial of
n = 232 individuals complaining of sore throat who were given the
rapid strep (streptococcal pharyngitis) test. Each individual was
also given a gold standard test, a throat culture.

D+ D− Total
T+ 44 4 48
T− 19 165 184
Total 63 169 232
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Estimating sensitivity, specificity, and prevalence

D+ D− Total
T+ 44 4 48
T− 19 165 184
Total 63 169 232

An estimate of Se is Ŝe = P̂r{T + |D+} = 44
63 = 0.70.

An estimate of Sp is Ŝp = P̂r{T − |D−} = 165
169 = 0.98.

The estimated prevalence of strep among those complaining
of sore throat Pr{D+} is p = P̂r{D+} = 63

232 = 0.27.
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Odds ratio for these data...

m=matrix(c(44,19,4,165),nrow=2)

rownames(m)=c("test.positive","test.negative")

colnames(m)=c("strep","no strep")

m # check that table is correct

fisher.test(m)

Odds of strep are 92 times greater when the test comes up positive
vs. negative.
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PVP

If we have a sore throat, and test positive, we may be interested in
the probability we have strep

Pr{D + |T+} =
Pr{T + |D+}Pr(D+)

Pr{T + |D+}Pr{D+}+ Pr{T + |D−}Pr{D−}

=
Se × p

Se × p + (1− Sp)× (1− p)

≈ 0.70× 0.27

0.70× 0.26 + (1− 0.98)× (1− 0.27)

= 0.92.

This is called the predictive value positive (PVP).
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PVN

Similarly,

Pr{D − |T−} =
Pr{T − |D−}Pr(D−)

Pr{T − |D−}Pr{D−}+ Pr{T − |D+}P{D+}

=
Sp × (1− p)

Sp × (1− p) + (1− Se)× p

≈ 0.98× (1− 0.27)

0.98× (1− 0.27) + (1− 0.70)× 0.27

= 0.90.

This is called the predictive value negative (PVN).

12 / 27



Sensitivity, specificity, PPV, and NPV

These four numbers summarize how useful a test T is:
sensitivity Pr{T + |D+}, specificity Pr{T − |D−}, positive
predictive value Pr{D + |T+} and negative predictive value
Pr{D − |T−}.
PPV and NPV are tied to how prevalent Pr{D+} the disease
is in the population – useful to an individual.

Se and Sp not tied to prevalence. Useful for picking a test in
terms of cost of making a mistake.

We ignored variability here and only reported point estimates.
How reliable these estimates are depends on how many people
were sampled. For example, Ŝe = 0.70 but a 95% CI is
(0.57, 0.81); that’s a large range. Similarly, Ŝp = 0.97 with
95% CI (0.94, 0.99).
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Which test is best?

Comparing tests
Say we have two tests, T1 and T2, with:

Se1 = 0.8, Sp1 = 0.99, Se2 = 0.99,Sp2 = 0.8.

Which is better?
It depends which is worse: a false negative or a false positive.

If a false positive is worse – perhaps resulting in unnecessary
surgery or a regimen of pharmaceuticals with harmful side
effects – then we want the false positive rate to be as small as
possible ⇔ want specificity to be high. Here we’d pick T1.

If a false negative is worse – perhaps letting a toxically
diseased (think mad cow) proceed to slaughter, or a home
pregnancy test – we want the false negative rate to be as
small as possible ⇔ want sensitivity to be high. Here’s we’d
pick T2.
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How to evaluate continuous tests?

Evaluating continuous tests: ROC Curves
Recall that dichotomizing a continuous test Y makes a new binary
test T :

Y > k ⇒ T+ and Y ≤ k ⇒ T−.

Magnitude of the individual test scores ignored ⇒ information
loss

Predictive probability of disease is same for all T+ (or T−)
individuals regardless of actual test scores

Subjects w/ very large scores Y are identical to those barely
above the cutoff

BUT, expect probability of disease to be an increasing
function of Y ...
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Picking one cutoff has implications...

Figure: Four serology scores dichotomized using cutoff k = 65.

Individuals 1 & 2 are T−; individuals 3 & 4 are T+.

Individuals 1 and 2 T−, test scores differ by 24 units.
Individuals 3 and 4 T+, test scores differ by 44 units.

Individuals 2 and 3 different although differ by only 2 units.
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Underlying densities of Y for diseased and non-diseased

Dichotomizing can oversimplify the analysis but gives easily
interpretable parameters: Se, Sp, PVP, and PVN.

Let G0 and G1 be distribution of Y from non-diseased and diseased
populations.

Figure: Cutoff k = 65 used to dichotomize continuous serology scores
distributed according to G0 (non-diseased) or G1 (diseased). 17 / 27



ROC curve

The receiver operator characteristic (ROC) curve plots
(1− Sp(k),Se(k)) for all cutoff values k .

Figure: ROC curve corresponding to the distributions G0 and G1.
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Overall test accuracy

ROC curve graphically illustrates a continuous test’s Y
usefulness in terms of all error rates.

Good tests have Se(k) close to one and 1− Sp(k) close to 0
for most k – translates into a concave curve with area
underneath close to one.

Area under the curve (AUC) is measure of tests overall
diagnostic accuracy. Often reported in publications.

The AUC is the probability of an infected having a larger Y
than a non-infected – for reasonable tests, this should be
larger than 0.5.
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ROC and logistic regression

Can use logistic regression to predict or model D+ vs. D− as
a function of continuous Y .

Can have multiple predictors of D+ or D−, continuous or
categorical! Gives one overall “test” predicting D+ or D−.

Doesn’t necessarily have to be a disease; can be any
dichotomous outcome, e.g. “metastasized” vs. “not
metastasized”, etc.

20 / 27



Esophageal tumor size and metastasis

Recall n = 31 patients with esophageal cancer studied; looked at
size of patients tumor size Y & whether cancer had spread
(metastasized) to lymph nodes (D+ or D−). Let’s see how well
tumor size classifies whether the cancer spreads.

library(ModelGood) # has Roc function

size=c(6.5,6.3,3.8,7.5,4.5,3.5,4.0,3.7,6.3,4.2,8.0,5.2,

5.0,2.5,7.0,5.3,6.2,2.0,9.0,4.0,3.0,6.0,4.0,4.0,

4.0,5.0,9.0,4.5,3.0,3.0,1.7)

spread= c(1,0,1,1,1,1,0,0,1,1,0,1,1,0,1,0,1,0,1,0,1,1,

0,0,0,1,1,1,0,1,0)

d=data.frame(size,spread)

f=glm(spread~size,family=binomial,data=d)

plot(Roc(f),auc=T)
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T1ρ to detect Parkinson’s disease

A newly developed continuous measure T1ρ is derived from an MRI
scan.

It is postulated that T1ρ is related to neuronal loss. This loss is
focused in the substantia nigra part of the brain in Parkinson’s
disease (PD) patients.

Case/control study looked at 9 PD patients (PD=1) and 10
controls (PD=0). T1ρ measured on all 19 subjects. (Other
covariates also recorded: UPSIT (smell), age, etc.)

Of interest is to determine if significant differences exist
between the PD=0 and PD=1 groups. Dotplot shows T2ρ

tends to be higher (more neuronal loss) in PD group.

t-test gives p = 0.000 for H0 : µ0 = µ1: T1ρ values are
significantly different in PD=0 and PD=1 groups.
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Dichotomizing...

Let’s define a formal binary test based on k = 172, 500.

PD+ PD− Total
T1ρ+ 8 1 9
T1ρ− 1 9 10
Total 9 10 19

k = 172, 500 ⇒ Ŝe = 8/9 ≈ 0.89 and Ŝp = 0.90.
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Dichotomizing...

If instead k = 171, 000 we get

PD+ PD− Total
T1ρ+ 9 1 10
T1ρ− 0 9 9
Total 9 10 19

Our estimates change to Ŝe = 1.00 and Ŝp = 0.90.

Sensitivity and specificity change with k ; a measure that
summarizes accuracy over all values of k is the ROC curve and the
area under the curve.
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T1ρ data

pd=c(1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,1)

t1rho=c(178745,165850,182821,172052,172708,176209,174769,174976,

174655,180869,163760,164660,162285,167675,151261,169693,160504,

170219,173043)

t2rho=c(63147,67666,64033,59079,73077,61439,63367,64488,67261,

70754,68670,73119,71357,73881,69354,70111,74136,72173,64101)

plot(t1rho~pd)

MRI=data.frame(pd,t1rho,t2rho)

f=glm(pd~t1rho,family=binomial,data=MRI)

plot(Roc(f),auc=T)

25 / 27



Does adding another test help?

Another measure derived from an MRI scan is T2ρ which measures
iron content – also linked to Parkinson’s disease.

Neither test alone perfectly discriminates PD=0 versus PD=1;
both together do a perfect job, at least on the sample. A linear
discriminant rule (i.e. a line) separates the PD=0 from the PD=1
perfectly.
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T1ρ and T2ρ used together...

plot(t1rho,t2rho,pch=pd)

legend(152000,65000,legend=c("PD-","PD+"),pch=c(0,1))

MRI=data.frame(pd,t1rho,t2rho)

f=glm(pd~t1rho+t2rho,family=binomial,data=MRI)

plot(Roc(f),auc=T)
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