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One factor vs. two or more...

So far we have seen a few one factor data sets:

Temperature for the lifetime of resin bond data.

g = 14 different treatments to control weeds among soybeans; outcome was
percent weeds.

Seeding vs. not seeding clouds and measuring rainfall.

But we also saw some data that effectively had two treatments:

For the fruit fly lifetimes A = number of partners (1 or 8), and B = unreceptive
(pregnant) or receptive (virgin).

For the cheese innoculant data, there were A = first strain, and B = second strain.

Experiments with multiple factors can be analyzed using oneway ANOVA as we’ve
done up until now, or they can be analyzed using multiway ANOVA.



Factorial treatment structure

Factorial treatment structure is simply the case where treatments are created by
combining factors.

These could be Nisin and Vitamin E factors in potential antimicrobials; water/rice ratio
and cooking time in steamed rice sensory properties; or intake temperature, intake
pressure, injection pressure, and injection timing in fuel efficiency of diesel engines.

In each case, the treatments are the combinations of factor levels.



Notation

We will often refer the the factors generically as A, B, C, and so on. Factor A has a
levels; factor B has b levels; and so on.

With two factors, there are g = ab treatments; with four factors, it is g = abcd
treatments.

We are still using a completely randomized design with N units applied to g
treatments, and if you want to, you can ignore the factorial nature when you analyze.



Two factors

Consider a two-factor design. We have data

yijk = µij + εijk

where i = 1, . . . , a; j = 1, . . . , b; and k = 1, . . . , n.

Here i , j together index the treatment by factor levels, and k indexes the replication
within each treatment.

Note we have n and not nij . We begin with the case of balanced designs where every
treatment has the same number of replications.



Example where A has a = 4 levels and B has b = 3 levels

For concreteness, consider a two-factor design with a = 4, b = 3, and g = 12. You can
visualize this as a table of means:

Factor B
Factor A 1 2 3

1 µ11 µ12 µ13
2 µ21 µ22 µ23
3 µ31 µ32 µ33
4 µ41 µ42 µ43

We can do oneway ANOVA on these 12 treatment groups, we can do pairwise
comparisons, contrasts (with coefficients wij summing to 0), etc. Everything we’ve
done to date just carries through.



Factorial treatment structure

On previous slide define the mean for A = i and B = j as

µij = µ+ αi + βj + αβij ,

giving the model
yijk = µ+ αi + βj + αβij + εijk .

α1, . . . , αa are the main effects of A.

β1, . . . , βb are the main effects of B.

αβij are the interaction effects between A and B.

A model that includes only main effects but not interaction is called additive.



Benefits of factorial design

If an interaction is present, a factorial will allow you to study, estimate, and test it.

When the interaction is absent, a factorial is more efficient than two designs that
study A and B separately. (In the factorial, each data point tells you about A and
about B.)



Remember

Our definition of interaction is based on statistical modeling, not on scientific principles
or considerations. In particular,

The need (or not) for interaction in modeling a data set depends on the scale of the
response.

This means that a data set could look interactive on the natural scale, but look
additive after transformation, or vice versa.

Interaction is always in the context of scale. Interaction as we use it is a modeling
concept, not a scientific concept.



Models and parameters

We begin with a two-factor model and then generalize.

When we just thought about g treatments and used an overall mean plus treatment
effects, we had an extra parameter. We solved that via a constraint (e.g., α1 = 0 or∑a

i=1 αi = 0).

The standard factorial model has an overall mean, main effects for each factor and
interaction effects. We will have a lot of extra parameters and need quite a few
constraints to settle things down.



A slide that will drive you crazy

Overall mean, main effects, interaction effects

yijk = µ+ αi + βj + αβij + εijk

i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , n

a∑
i=1

αi =
b∑

j=1

βj =
a∑

i=1

αβij =
b∑

j=1

αβij = 0

g = ab; N = nab = Ng

dfA = a− 1; dfB = b − 1; dfAB = (a− 1)(b − 1)

dfE = ab(n − 1) = N − ab = N − g

Note that (a− 1) + (b − 1) + (a− 1)(b − 1) = ab − 1 = g − 1.



Decomposing the data

yijk = y••• + µ̂
(y i•• − y•••) + α̂i

(y•j• − y•••) + β̂j
(y ij• − y i•• − y•j• + y•••) + α̂βij
(yijk − y ij•) rijk

yijk = y••• + µ̂
(y i•• − µ̂) + α̂i

(y•j• − µ̂) + β̂j
(y ij• − [µ̂+ α̂i + β̂j ]) + α̂βij
(yijk − [µ̂+ α̂i + β̂j + α̂βij ]) rijk



Balanced data

For balanced data, the SS decomposition is also easy.∑
ijk y2

ijk =
∑

ijk(µ̂+ α̂i + β̂j + α̂βij + rijk)2

=
∑

ijk µ̂
2 +

∑
ijk α̂i

2 +
∑

ijk β̂j
2

+
∑

ijk α̂βij
2

+
∑

ijk r2ijk

= Nµ̂2 +
∑

i nb α̂i
2 +

∑
j na β̂j

2
+
∑

ij n α̂βij
2

+
∑

ijk r2ijk

= SSConst + SSA + SSB + SSAB + SSE

Balance lets us go from the first line of the decomposition to the second, because all
the cross products add to 0 in the balanced case. Without balance, life is much harder.

SSConst is usually ignored.



ANOVA table

Source df SS MS F

A a− 1
∑

i nb α̂i
2 SSA/(a− 1) MSA/MSE

B b − 1
∑

j na β̂j
2

SSB/(b − 1) MSB/MSE

AB (a− 1)(b − 1)
∑

ij n α̂βij
2

SSAB/[(a− 1)(b − 1)] MSAB/MSE

Error N − ab
∑

ijk r2ijk SSE/(N − ab)

If H0 : αi ≡ 0 is true, MSA/MSE is F with (a− 1) and N − ab df.

If H0 : βj ≡ 0 is true, MSB/MSE is F with (b − 1) and N − ab df.

If H0 : αβij ≡ 0 is true, MSAB/MSE is F with (a− 1)(b − 1) and N − ab df.

Reject for big F (and small p-value), but still need to check assumptions.



What about n = 1, one replication for each (i , j)?

When n = 1 there the degrees of freedom for error is dfE = N − ab = ab − ab = 0; we
cannot estimate σ2. We can also drop the k subscript as yij is the only observation
observed for the (i , j) treatment combination.

In this case we can only fit the additive model

yij = µ+ αi + βj + εij .

Interaction plots (coming up) and Tukey’s test for additivity are two methods we can
use in this situation to gauge whether the additive model is okay.



Tukey’s 1 df test for additivity

Model is
yij = µ+ αi + βj + Dαiβj + εij .

Test H0 : γ = 0, giving additivity, vs. a multiplicative alternative. The alternative is
not the usual interaction with (a− 1)(b − 1) additional parameters, but a simplified
version with only one, the D.

Only need to use Tukey’s 1df test when there is no replication, e.g. n = 1.



Iron in rat livers

Lynch and Strain (1990) experiment: six treatments studying how milk-based diets and
copper supplements affect trace element levels in rat livers. Six treatments were the
combinations of three milk-based diets (skim milk protein, whey, or casein) and two
copper supplements (low and high levels).

irondata=data.frame(iron.in.liver=c(.70,.93,2.11,1.28,1.87,2.53),

diet=factor(rep(c("skim","whey","casein"),2)),

cu=factor(rep(c("control","deficient"),rep(3,2))))

f=lm(iron.in.liver~diet*cu,data=irondata)

anova(f) # n=1; R doesn’t let you fit the interaction model

f=lm(iron.in.liver~diet+cu,data=irondata)

anova(f) # assuming additive model okay, diet significant & copper almost

summary(f)

model.effects(f,"diet")

model.effects(f,"cu")

source("http://people.stat.sc.edu/hansont/stat506/tukey.R")

tukeys.add.test(irondata$iron.in.liver,irondata$diet,irondata$cu)

lines(pairwise(f,diet)) # Tukey HSD

Accept no (Tukey) interaction at 5% level. Diagnostics...



Wood chips

Data from Moore and McCabe (1999) problem 13.11: modulus of elasticity of wood
chips made from three different species of wood (aspen, birch, and maple) cut to two
different sizes (.015 inch thick or .025 inch thick). Have replication with n = 3 for
each of the 6 treatment combinations.

library(cfcdae)

moedata=data.frame(moe=c(308,278,428,398,426,331,

214,534,433,512,231,320,272,158,376,503,322,220),

size=factor(rep(c(.015,.025),9)),

species=factor(rep(c("aspen","birch","maple"),each=6)))

f=lm(moe~species*size,data=moedata)

anova(f)

Nothing is significant! Let’s look at some diagnostics...



Interpreting the SS

The SS for various terms can also be considered as “improvement” SS for model fit.
With the model A + B + AB:

The SS for A is the improvement in adding A main effects to a constant mean
model.

The SS for B is the improvement in going from a model with just A to an additive
model with A and B.

The SS for AB is the improvement in going from an additive model to the full
model with g = ab treatment means.



Interaction plots

ANOVA will allow us to determine whether interaction terms in our model are
statistically significant, but it won’t help us understand the interaction.

A tool for vidualizing interaction is the interaction plot.

This is a plot where we put points at (i , y ij•) for all i , j combinations. Then we
“connect-the-dots” between adjacent (i , y ij•) that share the same j .

Alternatively, you can reverse the roles of i and j and plot the pairs (j , y ij•) and then
connect the dots between adjacent points that share the same i .

Interaction plots are approximately parallel (up to error in the sample means) for
additive models.



NOX emissions

The two directions of plotting often give very different impressions.

NOX emissions from duel fuel engine (diesel and something, either gasoline or
hydrogen) with the start of injection (SOI) varied between 16 and 52 degrees before
top of dead center.

Both plots show us a much greater effect of fuel at low SOI, although I like the first
one better.

The third plot uses the square root of NOX, which is what is needed to stabilize the
residual variance.

Variability in these data is tiny relative to mean differences; everything is highly
significant.



NOX
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√
NOX makes interaction “disappear”
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Ice cream

Freezing time of small samples of ice cream mix using different kinds of milk and
different amounts of salt in the ice slurry.

Both main effects are significant, but interaction is not.

Response: freezingtime

Df Sum Sq Mean Sq F value Pr(>F)

milk 3 89966 29988.6 710.3151 < 2.2e-16 ***

salt 3 1104 368.1 8.7192 0.001169 **

milk:salt 9 501 55.6 1.3173 0.301901

Residuals 16 675 42.2

Let’s look at interaction plots...



Ice cream: additive?
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Ice cream: error bars help
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Interaction plots in R

with(moedata,interactplot(species,size,moe))

with(moedata,interactplot(size,species,moe))

with(moedata, interactplot(size,species,moe,confidence=.95))

# last one shows variability of sample means too large to

# assess whether the "interaction" is real!

with(irondata,interactplot(diet,cu,iron.in.liver))

with(irondata, interactplot(cu,diet,iron.in.liver))

# additivity seems like a good bet visually



Looking at main effects vs. interating effects

If a factor does not interact without factors you can look at contrasts in the that
factor’s main effects, e.g. pairwise differences via pairwise.

If A does not interact with B, then you can examine, e.g. c =
∑a

i=1 wiαi , or pairwise
differences αi − αj , etc. and interpret them as usual. These get at how the mean
response changes with levels of A, for a fixed value of B, i.e. conditional on B.

If A and B interact, i.e. the p-value for H0 : αβij = 0 is small, then you have to look at
differences in A at each level of B; these differences will change with B. For example,
look at the first interaction plot for the NOX data. Let’s see another example...



Overpredicted programmer-days

N = 24 programmers asked to predict how long a big project would take in
programmer-days; n = 4 replicates per treatment pair. After project over yijk is actual
minus predicted programmer-days (prediction errors). Programmers classified by type
of experience (A=1 small systems, A=2 small & large); and experience (B=1 is < 5
years, B=2 is 5− 10 years, B=3 is ≥ 10 years).

library(cfcdae)

library(lsmeans) # useful for "slicing" variables that interact

library(lattice)

errors=read.table("http://people.stat.sc.edu/hansont/stat506/errors.txt",header=T)

with(errors,interactplot(exper,years,days))

with(errors,interactplot(years,exper,days))

errors$exper=factor(errors$exper)

errors$years=factor(errors$years)

f1=lm(days~years*exper,data=errors)

anova(f1) # years & exper interact; keep interaction model



Overpredicted programmer-days

Since the two factors significantly interact we cannot fit the additive model and use
pairwise to examine main effects for experience and main effects for years. Instead
we need to examine pairwise differences of one factor separately for each level of the
other factor. This will help us estimate the differences we actually see in the
interaction plots. The lsmeans package allows us to do this easily.

# error differences in experience stratified by years

with(errors,interactplot(years,exper,days))

pairs(lsmeans(f1,"exper",by="years"))

confint(pairs(lsmeans(f1,"exper",by="years")))

# error differences in years stratified by experience

with(errors,interactplot(exper,years,days))

pairs(lsmeans(f1,"years",by="exper"))

confint(pairs(lsmeans(f1,"years",by="exper")))



General factorials

Factorials with more than two factors are just like factorials with two factors, only
more so:

More factors, so more subscripts.

More factors usually means more data.

More terms; each additional factor doubles the number of terms in the model.

More sum-to-zero (or other) constraints on coefficients.

More confusion with higher order interactions.

But the ideas are just like for two-factor factorials.



Example: four factor model

yijk`m = µ +

αi + βj + γk + δ` +

αβij + αγik + αδi` + βγjk + βδj` + γδk` +

αβγijk + αβδij` + αγδik` + βγδjk` +

αβγδijk` +

εijk`m

βγjk : how B effects change across levels of C (or vice versa).
βγδjk`: how the BC interaction changes across levels of D (or some other version of
two in and one out).
αβγδijk`: how the BCD interaction changes across levels of A (or some other version
of three in and one out).



Estimation and SS for balanced data

These terms add to zero across any subscript (32 total zero sum constraints).

For balanced data these terms are estimated by taking the mean in the data for the
corresponding subscripts and subtracting out estimates of any “lower order” terms. So
for α̂βγijk you would use

α̂βγijk = y ijk•• − [µ̂+ α̂i + β̂j + γ̂k + α̂βij + α̂γik + β̂γjk ]

SS are estimated effect squared, times number of units receiving the effect, added over

levels. SSBCD =
∑

jk` na β̂γδ
2

jk`.

DF are the product of the levels of factors appearing in the term, each reduced by 1.
BCD has (b − 1)(c − 1)(d − 1) df.



Anova tests for model effects

ANOVA has usual columns with MS as SS over DF and F tests for each term as the
MS for the term over MS for error. (And you need to be careful in your naming once
you get to five factors!)

To test the null hypothesis that all parameters of a given term are zero, compute the
p-value for the F statistic from the F distribution with corresponding df.

Check assumptions as usual. Remember that interaction depends on scale.



Exercise tolerance

Effects of gender (A, 1=male vs. 2=female), body fat % (B, 1=low fat vs. 2=high),
and smoking history (C, 1=light smoking vs. 2=heavy) of subjects on exercise
tolerance; yijkl is minutes of bicycling until fatigue, measured in small study of N = 24
subjects 25–35 years old. There are g = 2× 2× 2 = 8 treatment groups, so n = 3
replications per gender/fat/smoking combination. Let’s fit a full hierarchical threeway
interaction model and see if we can carve out unnecessary interactions...

library(cfcdae)

library(lsmeans) # useful for "slicing" variables that interact

tol=read.table("http://people.stat.sc.edu/hansont/stat506/tol.txt",header=T)

tol$gender=factor(tol$gender)

tol$smoking=factor(tol$smoking)

tol$fat=factor(tol$fat)

levels(tol$gender)=c("male","female")

levels(tol$smoking)=c("light","heavy")

levels(tol$fat)=c("low","high")

f1=lm(tol~gender*fat*smoking,data=tol) # hier. model w/ all interactions

anova(f1) # drop gender:fat, gender:smoking, and gender:fat:smoking?

f2=lm(tol~fat*smoking+gender,data=tol)

anova(f2)



Exercise tolerance

anova(f2,f1) # reduced model fits okay w/ p=0.44

par(mfrow=c(2,2))

pairwise(f2,gender) # gender difference the same across fat & smoking

par(mfrow=c(1,1))

with(tol,interactplot(fat,smoking,tol))

pairs(lsmeans(f2,"smoking",by="fat"))

confint(pairs(lsmeans(f2,"smoking",by="fat")))

with(tol,interactplot(smoking,fat,tol))

pairs(lsmeans(f2,"fat",by="smoking"))

confint(pairs(lsmeans(f2,"fat",by="smoking")))

Only need a two-way interaction between smoking and body fat. This means we can
consider the difference between levels of gender (fixing smoking and body fat level),
and look at slices of differences in smoking by body fat (fixing gender); or else
differences in body fat by smoking (fixing gender).



Model choice with unbalanced data

Say the sample sizes are not the same across groups; for twoway ANOVA let nij be the
sample size for the treatment A = i and B = j . The easiest approach is to remove
non-significant higher order interactions via Type III tests until what you have left is
significant; at all stages make sure you have a hierarchical model. This is called
“backwards elimination” of variables, a common approach described in many
textbooks on regression.

A type III test is simply testing a larger model with one extra variable vs. a smaller
model without that variable; exactly like using anova(f1,f2) as we did before. The
Anova function (note the capital ‘A’) in the car package performs Type III tests on
each variable in the model.

Your textbook and some other textbooks warn against this, because it is a form of
“data snooping”. Other textbooks seem fine with it. I like it because it simplifies the
model and the interpretation.



Hierarchy

A hierarchical model (in our sense) in one where the presence of a term implies the
presence of all included terms. For example, presence of ABC in the model would
imply the presence of the overall mean, A, B, C, AB, AC, and BC.

It is good statistical practice to use hierarchical models; only very rarely will a
non-hierarchical model make sense.



Unbalanced free plasma leucine data

Problem 10.8. Animal nutrition experiment was conducted to study the effects of
protein in the diet on the level of leucine in the plasma of pigs. Pigs randomly assigned
to one of twelve treatments: combinations of protein source (fish meal, soybean meal,
and dried skim milk) and protein concentration in the diet (9, 12, 15, or 18 percent).
The response is the free plasma leucine level in mcg/ml (Windels, 1964).

library(cfcdae); library(MASS); library(lsmeans); library(car)

d=read.table("http://users.stat.umn.edu/~gary/book/fcdae.data/pr10.8",header=T)

colnames(d)=c("source","percent","conc")

d$source=factor(d$source); d$percent=factor(d$percent)

levels(d$source)=c("fish meal","soybean meal","dried skim milk")

levels(d$percent)=c("9%","12%","15%","18%")

attach(d)

f=lm(conc~source*percent)

Anova(f,type=3) # gives different results than from anova(f)

par(mfrow=c(2,2)); plot(f) # yikes!

par(mfrow=c(1,1))

boxcox(conc~source*percent) # log-transformation

lconc=log(conc) # could also use 1/sqrt(conc)

f=lm(lconc~source*percent)

Anova(f,type=3)



Free plasma leucine data

Interaction needed so we concentrate on slices.

par(mfrow=c(2,2))

plot(f) # better but interaction still needed

par(mfrow=c(1,1))

with(d,interactplot(source,percent,lconc))

pairs(lsmeans(f,"percent",by="source"))

confint(pairs(lsmeans(f,"percent",by="source")))

with(d,interactplot(percent,source,lconc))

pairs(lsmeans(f,"source",by="percent"))

confint(pairs(lsmeans(f,"source",by="percent")))



Case hardening

Experiment on case hardening of lightweight shafts machined from alloy bars run to
study effects of amount of chemical agent added to molten alloy (A=low or high),
temperature of the hardening process (B=low or high), and time duration of the
hardening process (C=low or high). Hardness measured in Brinell units. It is of
interest to determine the effect of the three factors on hardness.

library(car); library(cfcdae); library(lsmeans); library(MASS)

d=read.table("http://people.stat.sc.edu/hansont/stat506/case.txt",header=F)

colnames(d)=c("hardness","agent","temp","time","rep")

d$agent=factor(d$agent)

d$temp=factor(d$temp)

d$time=factor(d$time)

f1=lm(hardness~agent*temp*time,data=d) # hier. model w/ all interactions

Anova(f1,type=3) # drop all pairwise and threeway interactions?

f2=lm(hardness~agent+temp+time,data=d)

anova(f2)

anova(f2,f1) # reduced model fits okay w/ p=0.88



Case hardening

No interactions! Can concentrate on differences in hardness across each factor holding
the other two constant.

pairwise(f2,agent)

pairwise(f2,temp)

pairwise(f2,time)



Last example: growth hormone treatment

Synthetic growth hormone administered at a clinical research center to growth
hormone deficient, short, prepubescent children. Two factors: gender (male & female)
and bone development (severely depressed, moderately depressed, mildly depressed).
Response is difference in growth rate during growth hormone treatment vs. previous
normal growth rate, in cm/month. Four children dropped out early, creating an
inbalanced design. Note that both factors are observational; there are no treatments
here. Want to find out how growth hormone affects these children, comparing bone
development and gender.

diff=c(1.4,2.4,2.2,2.1,1.7,0.7,1.1,2.4,2.5,1.8,2.0,0.5,0.9,1.3)

depress=factor(c(1,1,1,2,2,3,3,1,2,2,2,3,3,3))

gender=factor(c(1,1,1,1,1,1,1,2,2,2,2,2,2,2))

d=data.frame(diff,depress,gender)

levels(d$depress)=c("severe","moderate","mild")

levels(d$gender)=c("male","female")

par(mfrow=c(1,1))

with(d,interactplot(depress,gender,diff))

Let’s keep going...


