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Type I error

A Type I error is to wrongly reject the null hypothesis of what you are testing. When
we say “reject H0 at 5% level” we mean we reject the null hypothesis H0 but are
willing to make a mistake – reject when the null is true – 5% of the time, i.e. one in
twenty tests.

When we have multiple hypotheses, if we reject each at 5% there is a greater chance
than 5% of wrongly rejecting one or more nulls.



Background

Suppose that you had a 20-sided die. Nineteen of the sides are labeled 0 and one of
the sides is labeled 1.

You roll the die once. What is the chance of getting a 1? Easy, 5%.

Now roll the die 20 times. What is the chance of getting at least one 1?
1− .9520 = .642

Roll it 100 times, and the probability of at least one 1 is now 1− .95100 = .994



Background

Doing a 5% level test when the null is true is like rolling the die. You have a 5%
chance of rejecting that true null, just like one roll of the die.

Now do 20 tests at the 5% level, with the null true every time. The chance of one or
more nulls being rejected is .642. With 100 tests of true nulls, the chance of making at
least one false rejection is virtual certainty.

That is the essence of the multiple testing problem: how do you control error rates
when you do lots of tests?



Data snooping

Things are even worse if you don’t just do lots of tests but instead snoop in the data
to find something that looks interesting, and then test that interesting looking thing.

Example: when we looked at the fruit fly mating data, side-by-side boxplots indicated
than only the last group (8 virgin females) looked to have a mean different from the
rest. Looking at 1

4(µ1 + µ2 + µ3 + µ4)− µ5 is snooping!

In this case, your chance of rejecting the null in that single test is very high, even if
null is true and what you detected is just random variation.

It takes a heavy, blunt instrument powerful procedure to keep error rates under control
in that situation.



Notation

We have several null hypotheses H01,H02, . . . ,H0k .

H0 is the overall or combined null hypothesis that all of the other nulls are true

H0 = H01 ∩ H02 ∩ · · · ∩ H0k

H0 is true only if all k of H01, . . . ,H0k are true. If any of them are false then H0 is false.

Ei is the Type I error rate for the ith test; E is the Type I error rate for the combined
null.



Hypothesis test vs. CI

There is a useful and widely-used relationship between hypothesis tests and CI’s:

Let θ be a parameter to be estimated, e.g. θ = µ1, θ = µ3 − µ7,
θ = w1µ1 + · · ·+ wgµg , or in quadratic regression yij = β0 + β1zi + β2z2

i + εij maybe
θ = −0.5β1/β2, the maximum or minimum of the quadratic.

A 95% CI for a parameter θ includes all values where we would accept H0 : θ = θ0 (vs.
H1 : θ 6= θ0) at the 5% level.

A 99% CI for a parameter θ includes all values where we would accept H0 : θ = θ0 at
the 1% level.

To test H0 : θ = θ0 we accept if θ0 is in the CI and reject otherwise.



Errors

This is errors as in mistakes.

Declaring a true null to be false is a Type I error. This is a false positive, declaring
something to be happening when it is not.

Accepting a false null is a Type II error. This is a false negative, saying something is
not happening when, in fact, something is happening.



Truth table for one hypothesis

Reality/State of nature
Decision Null correct Null false

Fail to reject True negative False negative
Reject False positive True positive

Reality/State of nature
Decision Null correct Null false

Fail to reject , Type II error
Reject Type I error ,

The general approach in classical statistics is to control the probability of a Type I
error (E), and among procedures that control that error choose one that makes the
Type II error rate low.



Decision counts for k hypotheses

That’s pretty well defined for a single hypothesis, but working with multiple hypotheses
requires a bit more. Consider this table.

Numbers of decisions
Reality/State of nature

Decision Null correct Null false

Fail to reject A B
Reject C D

For k hypotheses, we have A + B + C + D = k .

In practice, we will never know these counts, but we can work with them theoretically.



Error rates: per comparison

The per comparison error rate ignores the multiple testing issue.

Here you just do a separate test for each null hypothesis ignoring all of the other tests.
Per comparison error control is

P[reject H0i |H0i true] ≤ E

In effect, we have k different tables with Ai ,Bi ,Ci , and Di . Because we assume that
all nulls are true, Bi = Di = 0 for all tables (sub-hypotheses). Or,

P[Ci = 1|H0i true] ≤ E



Error rates: per experiment

The per experiment error rate or experimentwise error rate controls the probability
that any H0i is rejected (thus rejecting H0) when all H0i (and H0) are true. Per
experiment error control is

P[reject any H0i |H0 true] ≤ E

Again, because we have all nulls true, B = D = 0 and per experiment control can be
written as

P[C > 0|H0 true] ≤ E

Protected by overall F-test of H0 : µ1 = · · · = µg , or joint F-test for several contrasts,
i.e. testing a contrast matrix.



Error rates: false discovery rate (FDR)

The False Discovery Rate allows for the possibility that some of the H0i are false.

Let F = C/(C+D) (or zero when C+D=0). This is the false discovery fraction—the
fraction of rejections that are incorrect.

Controlling the FDR is making sure

E

[
C

C + D

]
≤ E

so the expected fraction of false rejections is at most E . Note that the more correct
rejections you make, the more false rejections FDR lets you make.



Error rates: strong familywise (SFER)

The strong familywise error rate also allows for the possibility that some of the H0i

are false, but unlike the FDR it cuts you no slack for making correct rejections. SFER
control is

P[reject any H0i |H0i true] ≤ E

Controlling the SFER is
P[C > 0] ≤ E

Compare this carefully with the experimentwise error rate.



Simultaneous confidence intervals

If we are forming multiple confidence intervals instead of just testing, then
simultaneous confidence intervals satisfy

P[One or more of the CIs fails to cover its parameter] ≤ E

or
P[All CIs simultaneously cover their parameters] ≥ 1− E

The coverage rate of individual intervals within a simultaneous confidence interval
procedure will typically be larger than 1-E .

(In effect, SFER only requires simultaneous confidence intervals for null values, so this
requires more than SFER.)



Type I error control

Error rates were presented from weakest (per comparison) to strongest (simultaneous
CIs). If a procedure controls one rate, it will also control the weaker rates.

If a procedure controls an error rate at E , it controls the weaker error rates at
(something usually less than) E .

The stronger the Type I error rate control, the harder it is to see differences that are
really there.

Type I error control

As you make Type I control stronger, you make more and more Type II errors.



Review:

Per comparison hardly cares how many incorrect rejections in total.

Per experiment doesn’t want you to make an incorrect rejection, but if you make
one correct rejection, then it doesn’t care how many incorrect ones you make.

FDR gives you some slack; for example, for every 19 correct rejection it gives you
a pass on one incorrect rejection.

SFER doesn’t care how many correct rejections you make, it still doesn’t want you
to make an incorrect rejection.

Simultaneous confidence intervals not only requires you to get the nulls right and
the non-nulls right, and also need to say where all the parameter values are.



Gene expression data

Suppose that we have done a genomic assay on 30 women, 15 with breast cancer and
15 without. We have gene expression data on 5,000 genes.

To be concrete, let’s introduce another index k = 1, . . . , 5000 for gene. Then a typical
model is

Yijk = µik + εijk ,

where i = 1, 2 denotes case or control, j = 1, . . . , 15 women in each group (case or
control), and k = 1, . . . , 5000 is the gene being tested. There are 5000 potential
hypotheses to think about H0(k) : µ1k − µ2k = 0. And so 5000 “usual” per experiment
p-values to compute, e.g. using t.test in R.

To use Benjamini-Hochberg, which controls FDR (later) the tests must be
independent; is this reasonable?



Gene expression data

If we just had three genes in mind and didn’t care about the others, we might use a
per comparison error rate.

If we were primarily interested in whether there is some genetic influence, but want to
cast a wide net for potential genetic markers if there is a genetic component, then we
might use an experimentwise method.



Gene expression data

If we don’t want to be bombarded with a lot of genes incorrectly identified as active
but can work with a limited percentage of false positives, then FDR would do the trick.

If we want to have a controlled probability of making any false statement that a gene
is involved in breast cancer, then we control the SFER.

If we want to be able to estimate expression on all of the genes with simultaneous
coverage, then we need a simultaneous confidence interval method.



Approaches for controlling Type I error

Find the weakest Type I error rate control that is compatible with the kind of inference
you wish to make. Then choose a procedure that controls that error rate.

We’ll examine several approaches in common use; many are pairwise approaches.



Scheffé

Let’s begin with the heaviest, bluntest instrument of them all: the Scheffé adjustment
for contrasts.

The Scheffé procedure will control the strong familywise error rate for arbitrarily many
contrasts, including contrasts suggested by the data.

The price you pay for this amazing Type I control is lots of Type II errors; differences
have to be pretty big before Scheffé will reject the null.

The underlying idea of this procedure is to treat the SS from any contrast as if it had
g − 1 degrees of freedom (instead of 1).



Scheffé

To test H0 :
∑

i wiµi = 0, use

F =
(
∑

i wi ȳi•)
2

(g − 1)MSE
∑

i w2
i /ni

and compute the p-value from a F distribution with g − 1 and N − g df. (This “F” is
the square of the t-test for the contrast divided by g − 1.) Note that the denominator
uses g − 1 instead of 1, thus making the F-statistic smaller ⇒ p-value bigger ⇒ harder
to reject H0.

For a confidence interval use∑
i

wi ȳi• ±
√

(g − 1)FE,g−1,N−gMSE

∑
i

w2
i /ni

For example, if g = 5, N − g = 20, and E = .05, then the usual t-based multiplier for
the interval would be 2.08, but the Scheffé-based multiplier is 3.386 (equivalent to a t
with E=.0029).



Scheffé example in R

Recall w/ fruity fly data that we “snooped” and saw that group 5 looked different
from the other 4.

library(cfcdae) # contains linear.contrast function, otherwise...

source("http://people.stat.sc.edu/hansont/stat506/cfcdae.R")

d=read.table("http://users.stat.umn.edu/~gary/book/fcdae.data/pr3.2",header=T)

attach(d)

ftrt=factor(trt)

f=lm(days~ftrt) # parameterization doesn’t matter, here alpha1=0

linear.contrast(f,ftrt,c(.25,.25,.25,.25,-1)) # 8 virgins vs. the rest

linear.contrast(f,ftrt,c(.25,.25,.25,.25,-1),scheffe=T) # Scheffe

Intepretation? Note that p-value does not change; this function does not correctly
modify the p-value, only the CI. However, the Scheffé CI does not include zero, so we
reject H0 : 1

4(µ1 + µ2 + µ3 + µ4)− µ5 at the 5% level, correctly correcting for data
snooping. Note we can examine as many “snooped” contrasts as we want using
Scheffé. We simply reject those with CI’s that do not include zero.



Bonferroni

Our second general procedure is Bonferroni. Bonferroni works for k pre-planned tests,
so it does not work for data snooping.

The tests can be of any type, of mixed type, independent or dependent, they just have
to be tests.

Bonferroni says divide your overall error E into k parts: E1, E2, . . . , Ek with
∑

i Ei = E
(usually Ei = E/k). Run test i of H0i at the Ei error level. This will control the strong
familywise error rate.

If you are doing confidence intervals, compute the ith interval with coverage 1− Ei .
Then you will have simultaneous confidence intervals with coverage 1− E .



Bonferroni

Another way to think of this is do your tests and multiply the p-values by k . If any of
them still look small, then reject.

The advantage of Bonferroni is that it is easy and widely applicable.

The disadvantage of Bonferroni is that in many special cases there are better
procedures that control the same error rate.

Better in this case means fewer Type II errors or shorter confidence intervals, all while
still controlling the error of interest.

Either Scheffé or Bonferroni can be optimal, it depends on the number of tests to be
carried out k . I often fit both and use the one that produces smaller CI’s...as long as
I’m not data snooping.



Multiple contrasts in R

Let’s look again at the three contrasts examined for the fruit fly data in Chapter 4.

cm=matrix(c(-1,.25,.25,.25,.25,0,.5,-.5,.5,-.5,0,-.5,-.5,.5,.5),5,3)

cm # matrix of contrasts (each column are contrast coefficients)

linear.contrast(f,ftrt,cm,bonferroni=T)

linear.contrast(f,ftrt,cm,scheffe=T)

Bonferroni finds two significant differences whereas Scheffé only finds one! Here,
Bonferroni has more power. Both control the SFER, so we prefer Bonferroni. We are
able to use Bonferroni because we thought about and constructed the contrasts ahead
of time.

Again, note that only the CI’s are correctly adjusted, not the p-values. Be careful.



Pairwise comparisons vs. general contrasts

One special contrast has wi = 1 for group i and a wj = −1 for group j , the rest being
zero. Then w1µ1 + w2µ2 + · · ·+ wgµg = µi − µj , a pairwise comparison.

Bonferroni and Scheffé work for tests of any contrasts, including pairwise comparisons.
However, they are blunt instruments.

There are several more refined procedures that look at (a) all pairwise comparisons, or
(b) all pairwise comparisons with a control, while fixing certain Type I errors. First let’s
look at the Studentized range distribution.



Studentized range

Suppose H0 : µ1 = µ2 = · · · = µg (the single mean model) is true. Look at the
distribution of

max
i ,j

ȳi• − ȳj•√
MSE/n

This distribution is called the Studentized range. Its upper E percent point is denoted
qE(g , ν) where there are g groups and ν is the df for the MSE .

The Studentized range works by noting that ȳ(g)• − ȳ(1)• ≥ |ȳi• − ȳj•| for all i and j .



Studentized range

It’s not obvious, but qE(2, ν) =
√

2tE/2,ν . That is, with two groups you can link the
Studentized range to t.

It is possible to replace the F test comparing the separate means model to the single
mean model with a test based on the Studentized range. They usually, but not always,
agree.



Pairwise comparisons

Pairwise comparisons are simple comparisons of the mean of one treatment group to
the mean of another treatment group, estmiated by

µ̂i − µ̂j = ȳi• − ȳj•

Lets examine procedures according to the error rate that they control.



First order the µ̂1, . . . , µ̂g ...

Introduce new labels on the sample means so that ȳ(1)• is the smallest and ȳ(g)• is the
largest.

From ȳ(1)• to ȳ(g)• is a stretch of g means.
From ȳ(2)• to ȳ(g)• is a stretch of g − 1 means.
From ȳ(2)• to ȳ(4)• is a stretch of 3 means.



Step-down methods

Step-down methods look at pairwise comparisons starting with the most extreme pair
and working in. When you get to a pair whose equality of means cannot be rejected,
then you do not reject equality for every pair of means included in the stretch.

Step-down methods can only declare a stretch of means significantly different (i.e., the
ends are different) if the stretch exceeds its critical minimum and every stretch
containing the stretch also exceeds its critical minimum.

So failure to reject the null that the treatments corresponding to ȳ(2)• and ȳ(4)• have
equal means implies that we must fail to reject the comparisons between (2) and (3)
as well as (3) and (4).



Stopping rule

The step-down stopping rule is only needed if the critical minimum difference for
rejecting the null gets smaller as the stretches get shorter. If they all stay the same,
then failure to reject the endpoints of a stretch of means implies that you will not
reject any stretch within.

A couple of the forthcoming methods are real, genuine step-down methods (SNK and
REGWR). A couple have constant sized critical minima (LSD and HSD). However, we
will talk about them all as step-down because we can frame them together that way.



All pairwise methods work the same

Consider the difference
ȳ(j)• − ȳ(i)•

The critical value, often called the “significant difference,” for a comparison is

|ȳ(j)• − ȳ(i)•| >
X√

2

√
MSE

√
1

n(i)
+

1

n(j)

We say treatment means (i) and (j) differ if the observed difference in means exceeds
this significant difference.

All we need to do is set the mysterious X .



Several pairwise methods

Method X

LSD qE(2,N − g) =
√

2tE/2,ν
PLSD qE(2,N − g) but F test must reject
SNK qE(k ,N − g)
REGWR qEk (k,N − g)
HSD qE(g ,N − g)

The mysterious Ek in REGWR is Ek = E for k = g , g −1 and Ek = kE/g for k < g −1.

In general, N − g is replaced by df in the MSE .

LSD and PLSD are usually formulated using t distributions (i.e., use t and get rid of
the
√

2).



Approaches and error control

LSD is least significant difference. It protects the per comparison error rate.

PLSD is Protected LSD. Do the ANOVA F test first. If it rejects, then proceed with
LSD. If it fails to reject, then say no differences. The F-test protects experimentwise
error rate.

SNK is Student-Neuman-Keuls. Protects FDR.

REGWR is Ryan-Einot-Gabriel-Welsch range test. Protects SFER.

HSD is the Honest significant difference (also called the Studentized range procedure
or the Tukey W). It produces simultaneous confidence intervals (as difference plus or
minus significant difference).



Visualization

Write treatment labels so means are in increasing order, then draw a line under
treatments that are not significantly different.

C A B

The pairwise function gives

(a) The estimated pairwise differences µ̂i − µ̂j = ȳi• − ȳj•

(b) The significant difference(s) X√
2

√
MSE

√
1
n(i)

+ 1
n(j)

(c) Confidence intervals ȳi• − ȳj• ± X√
2

√
MSE

√
1
n(i)

+ 1
n(j)

Using the lines function with pairwise gives the visualization above.



Cheese inoculants

Total free amino acids in cheese after 168 days of ripening when subjected to four
different adjunct (nonstarter) bacterial treatments. Treatments are control, add strain
A, add strain B, add strains A and B.

cheese=read.table("http://users.stat.umn.edu/~gary//book/fcdae.data/exmpl5.5",header=T)

names(cheese)

cheese$trt=factor(cheese$trt)

f=lm(y~trt,data=cheese)

anova(f) # are there treatment differences at 5%?

?pairwise # look at available options, note e.g. confidence=0.9 changes CI level

# if you got the cfcdae package to work do not need the "print" wrapper

print(pairwise(f,trt)) # default is HSD

print(pairwise(f,trt,type="regwr")) # REGWR

print(pairwise(f,trt,type="snk")) # SNK

lines(pairwise(f,trt)) # default is HSD

lines(pairwise(f,trt,type="regwr")) # REGWR

lines(pairwise(f,trt,type="snk")) # SNK

A & B significantly different from control and A alone w/ SFER capped at 5%.



Compare to control

Sometimes we have a control treatment, and all we really want to do is compare each
treatment to control, but not the non-control treatments to each other.

Should you want to do this, there is a procedure called Dunnett’s Significant Difference
that will give you simultaneous confidence intervals or control SFER. Comparing
treatment g to the other treatments, use

ȳi• − ȳg• ± dE(g − 1, ν)
√

MSE

√
1/ni + 1/nj

You get dE(g − 1, ν) from the two-sided Dunnett’s table.



Dunnett’s Significant Difference

For one sided test, say with new yielding higher than control as the alternative, use

ȳi• − ȳg• > d ′E(g − 1, ν)
√

MSE

√
1/ni + 1/nj

If you only want to compare new to control, design with ng/ni ≈
√

g − 1. This gives
best overall results.

compare.to.control(f,trt,control=1)



Compare to best

Very useful: can use Dunnett to identify the group of treatments that distinguishes
itself as best.

Best subset (assuming bigger is better) is all i such that for any j 6= i :

ȳi• > ȳj• − d ′E(g − 1, ν)
√

MSE

√
1/ni + 1/nj

Best subset is all treatments not significantly less than the highest mean using a
one-sided Dunnett allowance.

The probability of truly best treatment being in this group is 1-E .



Weed control

Percent weed control in soybeans under 14 different treatments. Columns are
treatment number and percent control.

soybeans=read.table("http://users.stat.umn.edu/~gary/book/fcdae.data/exmpl5.10",header=TRUE)

names(soybeans)

f=lm(sqrt(100-y)~as.factor(trt),data=soybeans)

anova(f)

pairwise(f,as.factor(trt))

lines(pairwise(f,as.factor(trt)))

compare.to.best(f,as.factor(trt)) # one option: add conf=0.99

# not quite right, original response % weed control (high is good)

# transformed response is sqrt(100-y) so low is now good

compare.to.best(f,as.factor(trt),lowisbest=TRUE)

Treatments 1, 6, 7, 10, and 11 are the best and not significantly different according to
our model. Any problems here? Look at side-by-side boxplots...



Working with p-values directly

linear.contrast produces properly adjusted CIs but not p-values. We reject if the
adjusted CIs do not include zero (for multiple contrasts).

One approach works with the k p-values directly. There are three approaches described
in your book: Bonferroni, Holm, and Benjamini-Hochberg. Bonferroni controls SCI,
Holm the SFER, and Benjamini-Hochberg the FDR. See p. 82.

Say we have k = 10 hypotheses to test; fix the error at E = 0.05. Our per comparison,
i.e. usual p-values for the 10 tests are:

Hyp. H0(1) H0(2) H0(3) H0(4) H0(5)

p-value 0.0052 0.0041 0.0395 0.4533 0.0070

Hyp. H0(6) H0(7) H0(8) H0(9) H0(10)

p-value 0.1568 0.0032 0.0919 0.0094 0.0149



Bonferroni, Holm, and Benjamini-Hochberg

First we order the 10 p-values and then consider the criteria for Bonferroni, Holm, and
Benjamini-Hochberg.

i p(i)
E
k

E
(k−i+1)

iE
k

Hyp.

1 0.0032 0.0050 0.0050 0.0050 H0(7)

2 0.0041 0.0050 0.0056 0.0100 H0(2)

3 0.0052 0.0050 0.0063 0.0150 H0(1)

4 0.0070 0.0050 0.0071 0.0200 H0(5)

5 0.0094 0.0050 0.0083 0.0250 H0(9)

6 0.0149 0.0050 0.0100 0.0300 H0(10)

7 0.0395 0.0050 0.0125 0.0350 H0(3)

8 0.0919 0.0050 0.0167 0.0400 H0(8)

9 0.1568 0.0050 0.0250 0.0450 H0(6)

10 0.4533 0.0050 0.0500 0.0500 H0(4)

Reject H0(7) and H0(2) using Bonferroni (SCI). Reject H0(7), H0(2), H0(1), H0(5) using
Holm (SFER). Reject H0(7), H0(2) , H0(1), H0(5), H0(9), H0(10) using
Benjamini-Hochberg (FDR). Simply add H0(3) to the rejection list for per comparison
error rate.



Review

If we perform multiple, say k hypotheses there are different ways to control Type I
error from weakest to strongest: (1) per comparison, (2) experimentwise, (3) false
discovery rate, (4) strong familywise, and (5) simultaneous CIs.

linear.contrast allows experimentwise control (jointF=T), SFER
(bonferroni=T) for contrasts considered before looking at the data, SFER
(scheffe=T) for any contrasts.

If we only care about pairwise comparisons, pairwise will give all of them; only
the CIs are properly adjusted. We reject H0 : µi − µj = 0 ⇔ the CI does not
include zero. FDR protected by type="snk", SFER protected by type="regwr",
SCI given by default, Tukey. Use lines to visualize treatments that are not sig.
different.



Review

compare.to.control does exactly that; provides SCI (which also protects
SFER).

compare.to.best finds the best treatments – must specify if low or high is
“good” – and whether there are significant differences among them, via SCI
(protects SFER).

The “Bonferroni” style methods on the couple slides before the review work great
if you only have a bunch of p-values for your k hypotheses. Just order them and
compare to the cutoffs.


