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Background

We have already defined type I and II errors.

Reality/State of nature
Decision Null correct Null false

Fail to reject , Type II error
Reject Type I error ,

The type I error rate E is easy to set, we just choose it.

Power is the probability of rejecting the null when the null is false. Power is the
probability of declaring a difference when the difference is there (getting that lower
right smiley).

Power is a much more difficult customer than E .



Well-designed experiments are efficient

You should design your experiments to have “appropriate” power.

If the power is too low, then you’re just wasting your time and resources running
an experiment with no chance of finding what you are looking for.

If the power is too high, then you are spending resources in this experiment that
might be better spent somewhere else.

Appropriate power is probably in the .7 to .95 range, but it is situationally dependent.



Power depends on lots of unknown things

Power for the F test comparing the separate means model with the single mean model
depends on practically everything:

The type I error rate E .

The numerator and denominator degrees of freedom for the F test; these
obviously depend on g and N for the separate means model. We will only
consider the separate means model to start with.

The “non-centrality parameter ζ, which itself depends on the sample sizes
n1, . . . , ng , the non-null treatment means µ1, . . . , µg , and the error variance σ2.



Central and non-central F distributions

Under the null, the F statistic follows a central F dist’n with g − 1 and N − g df.

Combine this with E and we get a critical value: reject for F statistics larger than the
critical value. (Equivalently, any F in that range will have a p-value less than E .)

When the null is false, the F statistic follows a non-central F distribution with g − 1
and N − g df. The distribution is shifted to the right, and ζ controls the amount of
shift to the right.

Probability of being to the right of the critical value is the power. As you decrease E ,
it becomes more difficult to reject the null (that moves the critical value to the right so
you need a bigger F statistic to reject). For fixed g , N, and ζ, smaller E leads to lower
power.





Non-centrality parameter ζ

Let µi = µ+ αi where we use the αi s with
∑

i niαi = 0. Then

ζ =

∑g
i=1 niα

2
i

σ2

The expected value of the MSTrt is

E [MSTrt ] = σ2 +

∑g
i=1 niα

2
i

g − 1
= σ2

g − 1 + ζ

g − 1

Recall E [MSE ] = σ2 and F = MSTrt
MSE

. ζ is a measure of how far the alternative state of
nature is from the null.

ζ increases if you increase the sample sizes.

ζ increases if the error variance is smaller.

ζ increases if the means µi are farther apart.



Excuse me, but . . .

The discerning student will remark that ζ depends on lots of stuff we don’t know, like
the µi s and σ2. If we knew the µi s, we wouldn’t be doing the experiment in the first
place! So what gives?

In practice, power analysis and sample size selection are a big exercise in “Let’s
pretend” or “What if?”

We can control E , and we can control n1, . . . , ng , but otherwise we are plugging in
some hypothesized means and error variance and asking what the power would be for
that state of nature.



Think about alternatives

To make power analysis useful, you must be able to specify some scientifically or
practically meaningful set of alternative means µi , and you must be able to make a
guess as to how large the error variance σ2 is.

Find alternative means where you can say, “If this were true, I would want to know
about it,” and then design for those interesting alternatives.



Examples of alternatives

Examples might be

A doubling of the mutation rate is practically significant, so I want to design for
that.

An increase in MPG of 1 is relevant, so I will design for that.

A 20% reduction in the serum concentration of a hormone is diagnostic, so I
design for that.

Most granting agencies will require a power analysis before funding a proposal.



Estimating σ2

OK, but what about σ2? Some possibilities include:

Variance from a pilot study.

Variance from similar experiments in your lab or in the literature (most likely in
my experience).

Theoretical variances (possible for binomial counts and some other situations).

Analytical variance of equipment (generally an underestimate of σ2).

It’s probably best to do multiple power analyses that cover a range of plausible σ2

values.



Smallest interesting difference D

Suppose that you have equal sample sizes n1 = · · · = ng = n, and you think that any
configuration of means where two means are D or more units apart is interesting.

The smallest value of ζ for that description is

ζ0 =
nD2

2σ2

Any ζ for two means D units apart with sample sizes n will be at least as big as ζ0.

Thus the power for any of the other ζs will be at least as big as what you compute for
ζ0.



Power in R

power.anova.test in the cfcdae package allows you to enter either

ζ, the F(df1, df2) distribution to use, and Type I error α. Note that df1 = g − 1
and df2 = N − g for oneway ANOVA.

Actual means µ1, . . . , µg , sample sizes n1, . . . , ng , σ2, and α. This one is easier
but the first one can be used in more complex situations.

Say n1 = n2 = n3 = 5, σ2 = 4 and µ1 = 10, µ2 = 11, and µ3 = 15. Then µ∗ = 12 and
ζ = 1

σ2

∑g
i=1 niα

2
i = 1

4 [5(10− 12)2 + 5(11− 12)2 + 5(15− 12)2] = 5
4 [4 + 1 + 9] = 17.5.

> power.anova.test(ncp=17.5,df1=2,df2=12,alpha=.05)

[1] 0.9170125

> power.anova.test(means=c(10,11,15),ns=c(5,5,5),sigma2=4,alpha=.05)

[1] 0.9170125

The second way is easier for oneway ANOVA; use it for your homework.



Sample size

You have chosen E , you have some interesting values for the µi s, and you have a pretty
good idea what σ2 is.

Sample size analysis takes those and finds the smallest sample sizes ni that will achieve
a specified level of power.

In principle this involves computing power for a lot of different sample sizes and finding
the one that is just big enough. In practice, we just use R.



Sample size in R

sample.size.anova in the cfcdae package allows you to enter either

The smallest power needed, Type I error α, the number of groups g , and ζ for
n1 = · · · = ng = 1, i.e. ζ = 1

σ2

∑g
i=1 α

2
i . Note that df1 = g − 1 and df2 = N − g

for oneway ANOVA.

The smallest power needed, Type I error α, the actual means µ1, . . . , µg , and σ2.



Sample size in R

Say σ2 = 4 and µ1 = 10, µ2 = 11, and µ3 = 15. Then µ∗ = 12 and ζ for
n1 = n2 = n3 = 1 is
ζ = 1

σ2

∑g
i=1 niα

2
i = 1

4 [(10− 12)2 + (11− 12)2 + (15− 12)2] = 1
4 [4 + 1 + 9] = 3.5.

> sample.size.anova(.95,.05,ncp1=3.5,ngrps=3)

$nis

[1] 6 6 6

$power

[1] 0.9665357

> sample.size.anova(.95,.05,means=c(10,11,15),sigma2=4)

$nis

[1] 6 6 6

$power

[1] 0.9665357

The second way is easier for your homework problems.



Confidence intervals

Another approach to sample sizes picks n so that confidence intervals are short enough.

For a contrast, we use the CI

g∑
i=1

wiy i• ± tE/2,ν

√√√√MSE

g∑
i=1

w2
i

ni

The margin of error is thus

MOE = tE/2,ν

√√√√MSE

g∑
i=1

w2
i

ni

where ν is the df for MSE. The width of the interval is W = 2×MOE .



Assuming n1 = · · · = ng = n

If we assume that the ni s are all equal, we can solve to get:

n ≈
t2E/2,νMSE

∑g
i=1 w2

i

MOE 2

We haven’t done the experiment yet, so we don’t know MSE , and we will instead use a
guess of σ2 as we did in power analysis.



Confidence intervals

We know our desired MOE, we know the wi s, we have a guess for σ2 which we use as
a guess for MSE .

Compute n0 by substituting a normal percent point for the t-percent point.

n0 ≈
(Φ−1(1− E/2))2σ2

∑g
i=1 w2

i

MOE 2

This gives you a starting point. Now start n at n0 and increment it until

n ≥
t2E/2,g(n−1)σ

2
∑g

i=1 w2
i

MOE 2


