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2 Randomization vs. haphazard

An experiment is randomized if the method for assigning treatments to to units to
units involves a known, well-understood probabilistic scheme, called a randomization.
Aspects besides treatments may also be randomized.

Haphazard is not random.



Mice in a cage

Consider assigning treatments A (water) or B (water + kava extract) to 20 mice that
just arrived from the Jackson Laboratory; 10 should go into each treatment group.
Here are some methods for assigning treatments:

Give the 10 rats closest to the box opening A, and the other 10 B.

Give the slowest rats A (i.e. those caught first), and the faster ones B.

Place 10 red balls and 10 green balls into an urn. Take each rat out in turn and
draw a ball; red = A and green = B.

Pros/cons of each?



Why randomize?

Randomization protects agains confounding.

Randomization can be a basis for inference.



Bypass surgery example (p. 15)

Bypass surgery is major; patients w/ severe disease may not survive the operation. A
doctor may be tempted to assign stronger patients to surgery & weaker patients to
drug therapy.

This confounds strength of the patient with treatment differences. The drug therapy
would likely have a lower survival rate because it is getting the weakest patients, even
if the drug therapy is every bit as good as the surgery.



Randomization obviates confounding

On average, randomization balances assignments of treatments to subjects.

Each treatment gets approximately the same number of men vs. women.

Each treatment gets approximately the same number of older subjects.

Each treatment gets approximately the same number of weaker subjects.

Each treatment gets approximately the same number of professional birthday
party clowns and/or mimes.



And there’s more!

We don’t even need to know what we should balance for; randomization does it
(approximately) for us.

The deviation implied in the “approximately the same” assignments follows an
understood probability mechanism that we can account for.

Without randomization, deviation from balancing can lead to confounding: the units
are different in some unknown way, and we cannot account for it.

Lack of randomization can cause big trouble.



2.3 Example in R

To randomly assign N units into groups of size n1, n2, . . . , ng with
n1 + n2 + · · ·+ ng = N, first put the units in random order. Take first n1 of the
randomly ordered units for group 1, and so on. Alternatively, sample unit/subject
labels from a bag without replacement. Here’s both in R:

perm=sample.int(20)

treatA=perm[1:5]

treatB=perm[6:10]

treatC=perm[11:15]

treatD=perm[16:20]

labels=1:20

treatA=sample(labels,5) # take 5 labels without replacement

treatB=sample(labels[-treatA],5) # take 5 from remaining 15

treatC=sample(labels[-c(treatA,treatB)],5) # 5 more

treatD=labels[-c(treatA,treatB,treatC)] # what’s leftover

There are other functions/packages in R to do weighted sampling, etc.



One treatment having two levels

We want to see how a response changes with two levels, e.g. relief time from placebo
vs. a new allergy drug; heart rate before vs. after caffeine. Two ways to do this:

Collect N individuals, randomly allocate them into two groups (say placebo or
allergy drug) of sizes n1 and n2 where n1 + n2 = N.

Collect N individuals, each of whom will get both placebo and the drug;
randomize the order in which the individuals get either placebo or drug. Need to
wait a certain amount of time before applying the 2nd level of treatment to
minimize carryover effects.

First experiment results in a two-sample analysis, second in a paired analysis. Paired
analysis example of repeated measures and blocking (more later).

Note for the caffeine example, treatment orders are not randomized! Interest is in how
caffeine affects resting heart rate after ingestion; so heart rate measured before and
after caffeine. Analysis is still paired though.



Two-sampled tests and paired tests

Read my STAT 205 notes on two-sample hypothesis tests here:
http://people.stat.sc.edu/hansont/stat205/lecture12.pdf
http://people.stat.sc.edu/hansont/stat205/lecture13.pdf

Paired tests are covered here:
http://people.stat.sc.edu/hansont/stat205/lecture16.pdf

Reviews ideas in Prof. Oehlert’s Chapter 2 in more detail; self-contained.

For two sample inference, my notes use Y11, . . . ,Y1n1 as responses from level one and
Y21, . . . ,Y2n1 level 2. Sample means are Ȳ1 = 1

n1

∑n1
j=1 Y1j & Ȳ2 = 1
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2.4 Randomization for inference

Usual parametric inference w/ normal distributions, e.g. t-test:

Data are assumed to be random samples from some distribution (often normal).

Inference is about parameters (usually means) of the distributions, e.g. µ1 and µ2.

Sampling induces a distribution on the test statistic (under the null hypothesis),
e.g. the t distribution with some df.

P-value says something about how far the observed test statistic is into the tails
of the distribution. Typically reject if p-value < 0.05.

Groups are known, data are random samples.



Randomization testing turns that on its head:

The null is that the treatment groupings are meaningless and do not affect the
responses. The data are considered fixed.

The only thing random is the assignment of the data to groups.

Randomization induces a null distribution on a test statistic.

P-value says something about how far the observed test statistic is into the tails
of the distribution.

Data are known (constant); groups are random.



Permutation testing

1 Two-sample version of randomized test called a permutation test.

2 Computing the p-value exactly requires enumerating all possible ways to allocate
data into groups of size m and n, i.e. all permutations.

3 The results of randomization tests and standard tests are often quite close, but
not always.

4 Most of our analyses will assume normal outcomes but this not assumption not
always reasonable...

Where is the value in randomization tests?

If you did the randomization, then the randomization test is valid.

No debates about assumptions, residuals, and so on. It just works. That can be
important in legal settings. Also provides more power to reject H0 if data are very
unlike normal distributions.



Two-sample setting

Data x1, x2, . . . , xn and y1, y2, . . . , ym. We are testing for equal means. The (pooled)
two-sample t-test is

t =
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Null distribution is t with n + m − 2 df. This assumes normality, independence, and
equal variances. (There is also an unpooled version of the test, but the same points
apply.)



With the same data, the randomization test statistic is

t = x̄ − ȳ

The null distribution is found by computing the difference of means for all possible
assignments of N units into groups of size m and n (i.e., all possible randomizations).
The only assumption is the randomization.

These outcomes are equally likely. The p-value is fraction as extreme or more extreme
than statistic in the data.

NCn = N!
n!(N−n)! grows very quickly with N, making an exact computation cumbersome.

10C5 = 252 20C10 = 184, 756 30C15 = 15, 511, 752. Don’t want to do it by hand!



Paired setting

In paired data we have xi and yi , i = 1, 2, . . . , n measured on the same unit or units
that are similar in some way. Inference is on the differences di = xi − yi .

The paired t-test is

t =
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Null distribution is t with n − 1 df. This assumes normality, independence, and
constant variance.



With the same data, the randomization test statistic is just d̄ .

Under the randomization, the two units in the pair either received treatments A and B
(in that order), or B and A (in that order). Under the randomization null hypothesis,
the sign of each difference plus or minus with probability one half (independently).
Called the sign test.

The null distribution is found by looking at d̄ for all 2n possible outcomes for the n
different signs.

These outcomes are equally likely. The p-value is fraction as extreme or more extreme
than statistic in the data.



Paired experiment example w/ R code

Bezjak and Knez (1995) give data on seconds it takes N = 30 garment workers to
runstitch a collar on a mans shirt, using a standard workplace and a more ergonomic
workplace. Are times the same on average for the two workplaces? Let E (di ) = µ, the
mean difference in standard vs. ergonomic. Want to test H0 : µ = 0 vs. H0 : µ > 0.

library(oehlert) # contains all data sets from G. Oehlert’s book

library(cfcdae) # contains function permsign.test()

emp02.1 # look at data; Table 2.1 in book (p. 20)

d=emp02.1$std-emp02.1$ergon # compute differences

d # look at differences

summary(d) # summary statistics

hist(d,frequency=F) # data approximately normal?

shapiro.test(d) # formal test

t.test(d,alt="great") # one-sided t-test

permsign.test(d,plot=TRUE) # permutation test



Two-sample experiment example w/ R code

Hunt (1973) provides experimental data on absorption of phosphorus by Rumex
acetosa at 15 and 28 days after first harvest. These are N = 8 plants randomly divided
into two groups of n1 = n2 = 4. Is average log-phosphorus content the same or does
additional growing time accumulate more phosphorus? Let E (xi ) = µ1 (15 days) and
E (yi ) = µ2 (28 days); want to test H0 : µ1 = µ2 vs. H1 : µ1 < µ2.

library(perm) # has two-sample permuation test function permTS()

x15=c(4.3,4.6,4.8,5.4); y28=c(5.3,5.7,6.0,6.3) # Table 2.4 (p. 25)

# can also type library(oehlert) and use emp02.2

log.phos=c(x15,y28); group=c(15,15,15,15,28,28,28,28)

boxplot(log.phos~group) # side-by-side boxplots

t.test(x15,y28,alt="less") # UNPOOLED two-sample t-test

permTS(x15,y28,alt="less") # two-sample permutation test

wilcox.test(x15,y28,alt="less") # Wilcoxin-Mann-Whitney test

The Wilcoxin-Mann-Whitney test does not use the sample means as test statistics and
is an alternative nonparametric test that does not assume anything about the two
distributions. See
http://people.stat.sc.edu/hansont/stat205/lecture15.pdf for more details
if interested.



If you cannot get the cfcdae package to load

The code that defines this function can be run in R using the following:

source("http://people.stat.sc.edu/hansont/stat506/permsign.test.R")

permsign.test(d,plot=TRUE) # permutation test



Sign test on the median

Instead of looking at the mean difference, we can also look at the median difference;
this is what is in Lecture 16 in my STAT 205 notes. The median is not affected by
outliers to the same degree the mean is, so if data are highly skewed the median may
be more natural to look at. For example median income is more indicative of what a
typical person makes than mean.

We have di = xi − yi . Let η be the median difference between treatments A and B in
the paired setting. Testing H0 : η = 0 is especially easy, as shown below.

binom.test(sum(d>0),length(d)) # two-sided alternative

binom.test(sum(d>0),length(d),alt="great") # alternative H0: mu1>mu2

Note that the p-values are smaller than when testing the mean! In fact, the one-sided
alternative has a p-value below 0.05 using the median. Food for thought...


