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Poisson regression

Regular regression data {(xi1, . . . , xip, yi )}ni=1, but now yi is a
positive integer, often a count: new cancer cases in a year,
number of monkeys killed, etc.

Predictors can be factors (categorical) or continuous, just like
“regular” regression and logistic regression.

For Poisson data, var(yi ) = E (yi ); variability increases with
predicted values. In regular regression, this manifests itself in
the “megaphone shape” for ri versus predicted ŷi .

If you see this shape, consider whether the data could be
Poisson.

Any count, or positive integer could potentially be
approximately Poisson. In fact, binomial data where ni is
really large, is approximately Poisson.
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Poisson regression model

Let yi ∼ Pois(µi ).

The log function relates µi to β0 + β1xi1 + · · ·+ βpxip:

yi ∼ Pois(µi ), logµi = β0 + xi1β1 + · · ·+ xi ,pβp,

yielding what is commonly called the Poisson regression model.
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Interpretation

The model can be rewritten:

yi ∼ Pois(µi ), µi = eβ0+β1xi1+···+βpxip ,

or simply yi ∼ Pois
(
eβ0+β1xi1+···+βpxip

)
.

Say we have p = 3 predictors. The mean satisfies

µ(x1, x2, x3) = eβ0+β1x1+β2x2+β3x3 .

Then increasing x2 to x2 + 1 gives

µ(x1, x2 + 1, x3) = eβ0+β1x1+β2(x2+1)+β3x3 = µ(x1, x2, x3)eβ2 .

In general, increasing xj by one, but holding the other predictors
the constant, increases the mean by a factor of eβj .
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Butterflies

Extension researchers set up garden plots with different suites of
plants, with each suite identified as a level of the variable Garden
below. In September, they counted the number of monarch
butterflies in each garden plot.
Input = ("

Garden Monarchs

A 0

A 4

A 2

A 2

A 0

A 6

A 0

A 0

B 5

B 9

B 7

B 5

B 7

B 5

B 9

B 5

C 10

C 14

C 12

C 12

C 10

C 16

C 10

C 10

")
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Butterflies

Usual approach assumes normal data within each garden:

d=read.table(textConnection(Input),header=TRUE)

d

boxplot(Monarchs~Garden,data=d)

f=lm(Monarchs~Garden,data=d)

anova(f)

par(mfrow=c(2,2))

plot(f)

shapiro.test(rstudent(f)) # too many zeroes!

library(ggplot2)

ggplot(d,aes(Monarchs,fill=Garden))+geom_histogram(position="dodge")
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Butterflies

Poisson regression just as easy!

library(car)

library(lsmeans)

f=glm(Monarchs~Garden,family="poisson",data=d)

summary(f)

exp(1.3122) # 3.7 times more Monarchs in B vs. A

exp(1.9042) # 6.7 times more Monarchs in C vs. A

exp(1.9042-1.3122) # 1.8 times more Monarchs in C vs. B

Anova(f,type=3)

pairs(lsmeans(f,"Garden"))
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Helicopter service data

An operations analyst in a sheriff’s department studied how
frequently their emergency helicopter was used during a particular
year by shift 2am–8am, 8am-2pm, 2pm-8pm, 8pm-2am. A random
sample of 20 counts were obtained (in time order).

d=read.table("http://people.stat.sc.edu/hansont/stat506/helicopter.txt",

header=F)

counts=d[,1]

shift=factor(d[,2])

f=lm(counts~shift)

par(mfrow=c(2,2))

plot(f)

Uh oh! Can try a Box-Cox transformation (need to add one to
each count first though), or else just analyze the data as Poisson!
Let’s keep going...
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Offsets

Sometimes counts are collected over different amounts of
time, space...

For example, we may have numbers of new cancer cases per
month from some counties, and per year from others.

If time periods are the same from for all data, then µi is the
mean count per time period.

Otherwise we specify µi as a rate per unit time period and
have data in the form {(xi , yi , ti )}ni=1 where ti is the amount
of time that the yi accumulates over. xi = (xi1, . . . , xip).

Model: yi ∼ Pois(tiµi ).

Have
yi ∼ Pois

(
eβ0+β1xi1+···+βpxip+log(ti )

)
.

log(ti ) is called an offset.
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Ache monkey hunting

Data on the number of capuchin monkeys killed by n = 47 Ache
hunters over several hunting trips were recorded; there were 363
total records.

The hunting process involves splitting into groups, chasing
monkeys through the trees, and shooting arrows straight up.

Let yi be the total number of monkeys killed by hunter i of age ai
(i = 1, . . . , 47) over several hunting trips lasting different amounts
of days; total number of days is ti . Let µi be the hunter i ’s kill
rate (per day).

yi ∼ Pois(µi ti ),

where
logµi = β0 + β1ai + β2a

2
i .

A quadratic effect is included to accommodate a “leveling off”
effect or possible decline in ability with age. Of interest is when
hunting ability is greatest; hunting prowess contributes to a man’s
status within the group.
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Aiming for...
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...dinner!
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R code

age=c(67,66,63,60,61,59,58,57,56,56,55,54,51,50,48,49,47,42,39,40,

40,39,37,35,35,33,33,32,32,31,30,30,28,27,25,22,22,21,20,18,17,

17,17,56,62,59,20)

kills=c(0,0,29,2,0,2,3,0,0,3,27,0,7,0,3,0,6,1,0,7,4,1,2,2,0,0,19,9,

0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0)

days=c(3,89,106,4,28,73,7,13,4,104,126,63,88,7,3,56,70,18,4,83,15,

19,29,48,35,10,75,63,16,13,20,26,4,13,10,16,33,7,33,8,3,13,3,62,4,

4,11)

f=glm(kills~age+I(age^2),offset=log(days),family="poisson")

summary(f)

rawrate=kills/days

fit2=loess(rawrate~age) # nonparametric estimate of kill rate

age.grid=seq(17,67,1)

pred2=predict(fit2,age.grid)

plot(age.grid,pred2,type="l",xlab="Age",ylab="Kill Rate")

points(age,rawrate)

fitted=exp(cbind(rep(1,length(age.grid)),age.grid,age.grid^2)%*%f$coef)

lines(age.grid,fitted,lty=2)

The fitted monkey kill rate is
µ(a) = exp(−5.4842 + 0.1246a− 0.0012a2). At what age,
typically, is monkey hunting ability maximized? 13 / 16



Comment on blocking

Recall that we discussed blocking on individuals to reduce
variability. The Ache hunters actually took part in many hunting
trips, i.e. there are repeated measures on each hunter. We can
instead consider hunting trip j from hunter i of length Lij days,
and posit a mixed model

yij ∼ Pois(λijLij), log(λij) = β0 + β1ai + β2a
2
i + ui ,

where
u1, . . . , u47

iid∼ N(0, σ2)

are random hunter ability effects.

This model, fit in glmer in the lme4 package, reduces variability
by appropriately blocking the repeated measures on hunter.
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Random hunter effects in R

Needed to use ai − 45 instead of ai ; R complained. Sometimes
have to “center” variables around some value (usually the mean) if
going to include them as quadratic functions.

library(lme4) # has glmer function in it

d=read.table("http://people.stat.sc.edu/hansont/stat506/ache.txt",header=F)

d # look at original data set

id=d[,2]; age=d[,3]; kills=d[,4]; days=d[,5]

f=glmer(kills~I(age-45)+I((age-45)^2)+(1|id),offset=log(days),

family="poisson")

summary(f)

Note p-value for quadratic effect now significant! Blocking gives
you more power to zoom in on fixed effects.
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Not all counts need to be modeled as Poisson!

Recall the salable flowers example from our ANCOVA notes...

variety= factor(c(1,1,1,1,1,1,2,2,2,2,2,2,1,1,1,1,1,1,2,2,2,2,2,2))

moisture=factor(c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2))

yield= c(98,60,77,80,95,64,55,60,75,65,87,78,71,80,86,82,46,55,76,68,43,47,62,70)

plotsize=c(15, 4, 7, 9,14, 5, 4, 5, 8, 7,13,11,10,12,14,13, 2, 3,11,10, 2, 3, 7, 9)

d=data.frame(yield,plotsize,variety,moisture)

plot(yield~plotsize,col=rep(1:4,each=6),main="yield by plotsize & variety:moisture",pch=19)

legend(3,90,legend=c("1:1","2:1","1:2","2:2"),col=1:4,pch=19)

f1=lm(yield~plotsize+variety*moisture,data=d)

Anova(f,type=3)

f2=lm(yield~plotsize+variety+moisture,data=d)

pairs(lsmeans(f2,"variety"))

pairs(lsmeans(f2,"moisture"))

# plotsize is the area of the plot the flowers were counted in...

f3=glm(yield~variety+moisture,offset=log(plotsize),

family="poisson")

Normal model actually fits great; Poisson regression loses power to
detect treatment differences.
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