STAT 520, Fall 2015: Exam I

This exam was posted online Tuesday October 13, 2015 at noon. Complete the exam, scan your solutions, and email to Yawei Liang (yliang@email.sc.edu) by noon Wednesday October 14, as usual. You are to work completely independly on this exam; however you may use notes, your textbook, Google, etc.

1. Let $\{Y_t\}$ be a stationary process with constant mean $E(Y_t) = \mu$ and autocorrelation function ρ_k . Define $\overline{Y} = \frac{1}{n} \sum_{t=1}^n Y_t$ to be the sample mean of Y_1, Y_2, \ldots, Y_n . Recall that

$$\operatorname{var}(\overline{Y}) = \frac{\gamma_0}{n} \left[1 + 2\sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right],$$

where $\gamma_0 = \operatorname{var}(Y_t)$. Find $\operatorname{var}(\overline{Y})$ when $\{Y_t\}$ is ARMA(1,1) with parameters ϕ and θ . Find one pair of values (ϕ, θ) that makes $\operatorname{var}(\overline{Y})$ smaller than that for white noise when n = 3. By what fraction is the variance reduced?

2. Let $\{e_t\}$ be mean-zero white noise, as usual, and consider the series

$$Y_t = 1.25Y_{t-1} - 0.125Y_{t-2} - 0.125Y_{t-3} + e_t + 0.25e_{t-1}.$$

- (a) Write the series as $\phi(B)(1-B)^d Y_t = \theta(B)e_t$. That is, find $\phi(B)$, $\theta(B)$, and d so that the differenced series is stationary and invertible. You may use an online root finder for help if you want. Hint: as shown in class, root finders will rewrite the equation $1 + c_1 B + c_2 B^2 + c_3 B^3 = 0$ as $a(B r_1)(B r_2)(B r_3) = 0$. You need to divide both sides of this latter equation by $ar_1r_2r_3$ and multiply by $(-1)^3 = -1$ to get it in the form $(1 B/r_1)(1 B/r_2)(1 B/r_3) = 0$.
- (b) Obtain the population autocorrelation function (ACF) for the appropriately differenced series $W_t = \nabla^d Y_t$. You can use ARMAacf in R and report a plot.
- (c) Simulate n = 200 from the series $\{Y_t\}$ assuming $e_t \stackrel{iid}{\sim} N(0, \sigma_e^2)$ where $\sigma_e = 1$ and plot it along with the sample ACF. Do the same for the differenced series $\{\nabla Y_t\}$. R code to simulate from an ARIMA(1,1,1) is in Chapter 5; you could modify this.
- 3. Let $\{Y_t\}$ be an AR(1) process with $|\phi| < 1$. Find the autocorrelation function for $W_t = \nabla Y_t = Y_t Y_{t-1}$ in terms of ϕ and σ_e^2 . What does this simplify to at lag k = 0, i.e. what is var (W_t) ?

4. An underground temperature probe was placed about a half kilometer away from geothermal borehole in Iceland. Degrees Celsius Y_t were recorded daily for 200 days in 2014. This will read the data into R:

library(TSA)

y=ts(read.table("http://people.stat.sc.edu/hansont/stat520/thermal.txt"),start=1)

- (a) Plot the temperature Y_t versus time t and accompanying sample ACF. Does the data appear to be stationary? Are there any pronounced trends? Describe.
- (b) Fit a straight-line regression model to the data for detrending purposes and plot the residuals $r_t = Y_t \hat{\beta}_0 \hat{\beta}_1 t$ versus time t. Does a line appear to fit okay?
- (c) Fit a quadratic regression model to the data for detrending purposes and plot the residuals $r_t = Y_t \hat{\beta}_0 \hat{\beta}_1 t \hat{\beta}_2 t^2$ versus time t, along with the sample ACF of the residuals. Do the residuals appear to be stationary?
- (d) Now plot the first difference of the residuals $\nabla r_t = r_t r_{t-1}$ from part (c) versus time t along with the sample ACF. Comment on whether stationarity is finally achieved.
- (e) Based on the ACF from part (d), what might a plausible model for $w_t = \nabla r_t$ be? Why?