Chapter 11

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

11.1: Weighted least squares

- Chapters 3 and 6 discuss transformations of x_1, \ldots, x_k and/or Y.
- This is "quick and dirty" but may not solve the problem.
- Or can create an uninterpretable mess (book: "inappropriate").
- More advanced remedy: weighted least squares regression.
- Model is as before

$$Y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik} + \epsilon_i,$$

but now

$$\epsilon_i \stackrel{ind.}{\sim} N(0, \sigma_i^2).$$

Note the subscript on σ_i ...

- Here $var(Y_i) = \sigma_i^2$. Give observations with higher variance *less* weight in the regression fitting.
- Say $\sigma_1, \ldots, \sigma_n$ are known. Let $w_i = 1/\sigma_i^2$ and define the weight matrix

$$\mathbf{W} = \begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_n \end{bmatrix} = \begin{bmatrix} \sigma_1^{-2} & 0 & \cdots & 0 \\ 0 & \sigma_2^{-2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^{-2} \end{bmatrix}.$$

• Maximizing the likelihood (pp. 422-423) gives the estimates for β :

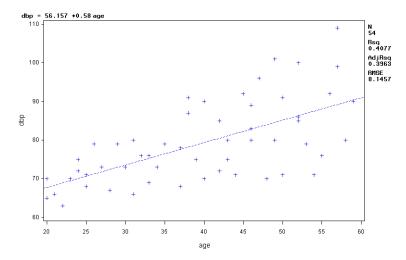
$$\label{eq:bw} \boldsymbol{b}_{w} = (\boldsymbol{X}\boldsymbol{W}\boldsymbol{X}')^{-1}\boldsymbol{X}'\boldsymbol{W}\boldsymbol{Y}.$$

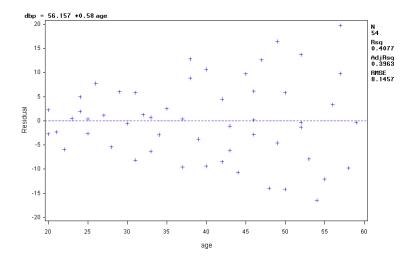
- However, $\sigma_1, \ldots, \sigma_n$ are almost always unknown.
- If the mean function is appropriate, then $E(e_i^2) = \sigma_i^2(1 h_{ii})$ where e_i is obtained from ordinary least squares, so e_i^2 estimates σ_i^2 and $|e_i|$ estimates σ_i (pp. 424-425) as $h_{ii} \to 0$ as $n \to \infty$.
- Look at plots of $|e_i|$ from a normal fit against predictors in the model and the fitted values \hat{Y}_i to see how σ_i changes with predictors or fitted values.
- For example, if $|e_i|$ increases linearly with $\hat{Y}_i = \mathbf{x}_i' \mathbf{b}$, then we'll fit $|e_i| = \alpha_0 + \alpha_1 x_{i1} + \cdots + \alpha_k x_{ik} + \delta_i$ and obtain the fitted values $|e_i|$.
- If e_i^2 increases linearly with only x_{i4} , then we'll fit $e_i^2 = \alpha_0 + \alpha_4 x_{i4} + \delta_i$ and obtain the fitted values $\widehat{e_i^2}$.

- 1 Regress Y against predictor variable(s) as usual (OLS) & obtain e_1, \ldots, e_n & $\hat{Y}_1, \ldots, \hat{Y}_n$.
- 2 Regress $|e_i|$ against predictors x_1, \ldots, x_k or fitted values \hat{Y}_i .
- 3 Let \hat{s}_i be the fitted values for the regression in 2.
- 4 Define $w_i = 1/\hat{s}_i^2$ for i = 1, ..., n.
- 5 Use $\mathbf{b}_w = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{Y}$ as estimated coefficients automatic in SAS. SAS will also use the correct $\operatorname{cov}(\mathbf{b}_w) = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}$ (p. 423). This is developed formally in linear models.

SAS code: initial fit

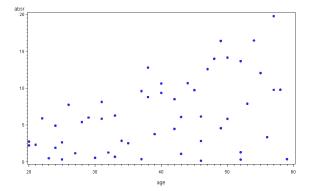
```
* SAS example for Weighted Least Squares ;
* Blood pressure data in Table 11.1
data bloodp; input age dbp @@; datalines;
  27
       73
           21
                 66
                      22
                           63
                               24
                                     75
                                         25
                                               71
                                                   23
                                                         70
                                                                   65
                                                             20
  20
       70
            29
                 79
                      24
                           72
                                25
                                     68
                                         28
                                               67
                                                   26
                                                         79
                                                             38
                                                                   91
  32
       76
           33
                 69
                      31
                           66
                                34
                                     73
                                         37
                                               78
                                                   38
                                                         87
                                                             33
                                                                   76
  35
       79
            30
                 73
                      31
                           80
                                37
                                     68
                                         39
                                               75
                                                   46
                                                         89
                                                             49
                                                                  101
  40
       70
            42
                 72
                      43
                           80
                                     83
                                         43
                                               75
                                                         71
                                                                   80
                                46
                                                   44
                                                             46
  47
       96
            45
                 92
                      49
                           80
                                48
                                     70
                                         40
                                               90
                                                   42
                                                         85
                                                             55
                                                                   76
  54
       71
            57
                 99
                      52
                           86
                                53
                                     79
                                         56
                                               92
                                                   52
                                                         85
                                                             50
                                                                   71
  59
       90
                 91
                      52
                          100
                                58
                                     80
                                         57
            50
                                              109
; run;
* Regress the response, dbp, against the predictor, age;
* The plots show definite nonconstant error variance
proc reg data=bloodp;
 model dbp=age;
 output out=temp r=residual;
 plot dbp*age r.*age;
run;
```





SAS code: determining w_i

* Plot of absolute residuals against age shows that
 absolute residuals increase approximately linearly;
data temp; set temp; absr = abs(residual); run;
symbol1 v=dot h=0.8;
axis1 order=(0 to 20 by 5);
proc gplot data=temp; PLOT absr*age/ vaxis=axis1; run;



SAS code: WLS fit

```
* Regress absolute residuals against the age
* This second regression is done on the data set temp ;
proc reg data=temp;
 model absr=age;
 output out=temp1 p=s_hat ;
run:
* Define weights using the fitted values from this second regression ;
data temp1; set temp1; w=1/(s_hat**2); run;
* Using the WEIGHT option in PROC REG to get the WLS estimates ;
* This last regression is done on the data set temp1
proc reg data=temp1;
 weight w;
 model dbp=age / clb;
 output out=temp2 r=residual;
 plot dbp*age r.*age;
run;
```

SAS output: WLS fit

The REG Procedure Dependent Variable: dbp

Weight: w

Analysis of Variance

м---

			Sum or	nean		
Source Model		DF	Squares	Square	F Value	Pr > F
		1	83.34082	83.34082	56.64	<.0001
Error		52	76.51351	1.47141		
Corrected Total		53	159.85432			
	Root MSE Dependent Mean		1.21302	R-Square	0.5214	
			73.55134	Adj R-Sq	0.5122	
	Coeff Var		1.64921			

Parameter Estimates

		Parameter	Standard				
Variable	DF	Estimate	Error	t Value	Pr > t	95% Confidence	e Limits
Intercept	1	55.56577	2.52092	22.04	<.0001	50.50718	60.62436
age	1	0.59634	0.07924	7.53	<.0001	0.43734	0.75534

- $se(b_1)$ reduced from 0.097 (OLS) to 0.079 (WLS). WLS verified via bootstrap on pp. 462–463 (just FYI).
- R^2 no longer interpreted the same way in terms of amount of total variability explained by model.
- In WLS, standard inferences about coefficients may not be valid for small sample sizes when weights are estimated from the data.
- If MSE of the WLS regression is near 1, then our estimation of the "error standard deviation" function is okay. Here it's 1.21.

Fitting the model directly...

- A drawback of this approach is that the weights $w_i = 1/\hat{s}_i^2$ have associated variability that is not reflected in $cov(\mathbf{b}_w)$.
- It is possible to fit the implied model

$$Y_i = \beta_0 + \beta_1 a_i + \epsilon_i, \quad \epsilon_i \sim N(0, \tau_0 + \tau_1 a_i),$$

directly in SAS. One option is to have SAS maximize the associated likelihood in PROC NLMIXED.

Note that a similar, and possibly more appropriate, model

$$Y_i = \beta_0 + \beta_1 a_i + \epsilon_i, \quad \epsilon_i \sim N(0, e^{\tau_0 + \tau_1 a_i}),$$

was used for the Breusch-Pagan test H_0 : $\tau_1=0$ described in Sections 3.6 and 6.8. This model can also be fit easily in PROC NLMIXED.

 However, things like F-tests go out the window and everything relies on asymptotics (which for large enough samples work fine).

SAS code: fitting model directly

```
* Model fit directly using PROC NLMIXED ;
* Starting values obtained from regressions 1 and 2 ;
proc nlmixed data=bloodp;
parms beta0=50 beta1=0.5 tau0=-1 tau1=0.2;
mu=beta0+beta1*age; sigma=tau0+tau1*age;
model dbp ~ normal(mu,sigma*sigma);
run;
```

With abridged output

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood	362.5
AIC (smaller is better)	370.5
RTC (smaller is hetter)	378 5

Parameter Estimates

Standard

Parameter	Estimate	Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Gradient	
beta0	55.5317	2.4689	54	22.49	<.0001	0.05	50.5819	60.4815	3.678E-6	
beta1	0.5973	0.07811	54	7.65	<.0001	0.05	0.4407	0.7539	0.000108	
tau0	-2.0367	1.7585	54	-1.16	0.2519	0.05	-5.5622	1.4889	4.053E-6	
tau1	0.2414	0.05557	54	4.34	<.0001	0.05	0.1300	0.3528	0.000067	

11.2: Ridge regression

- Before considering ridge regression, recall that even *serious* multicollinearity does not present a problem when the focus is on prediction, and prediction is limited to the overall pattern of predictors in the data. Use $\mathbf{x}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_h$ for predictor \mathbf{x}_h and compare to the rest of the leverages.
- Principle components provide composite "predictors" that are uncorrelated. Under umbrella term of "dimension reduction."
- Ridge regression is an advanced remedial measure for multicollinearity that uses a biased estimate b^R instead of the OLS b.
- Although biased, it may have *less variance* one of the effects of multicollinearity was exploding $se(b_k)$. See Fig. 11.2 (p. 432).

- Ridge regression adds a biasing constant c to the normal equations based on the standardized regression model developed in Section 7.5 (also used for VIFs in 10.5); read pp. 273–275 and p. 433.
- $c = 0 \Rightarrow OLS$ estimator **b**.
- ullet Bias in the estimator ${f b}^R$ increases/decreases with c.
- VIFs/ R^2 decrease with increasing c.
- Look at plots of b_j^R and VIF_j versus c to see when estimates and variance inflation stabilize. Can get these automatically in SAS.
- Note no standard errors when choosing c by eye. Need to use bootstrap; not automatic in SAS.
- Ridge regression is related to the LASSO; more in a minute...

Standard error for fixed c

Page 433. Working with standardized model

$$Y_i^* = \beta_1^* x_{i1}^* + \cdots \beta_k^* x_{ik}^* + \epsilon_i^*.$$

 $\mathbf{b}^R = ((\mathbf{X}^*)' \mathbf{X}^* + c \mathbf{I})^{-1} (\mathbf{X}^*)' \mathbf{Y}^*.$

So

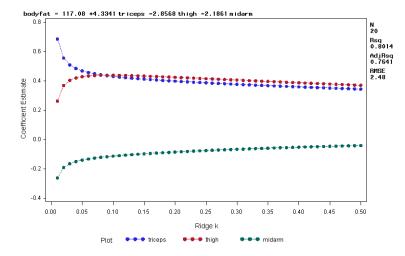
$$cov(\mathbf{b}^R) = ((\mathbf{X}^*)'\mathbf{X}^* + c\mathbf{I})_k^{-1}(\mathbf{X}^*)'(\mathbf{X}^*)((\mathbf{X}^*)'\mathbf{X}^* + c\mathbf{I})^{-1}(\sigma^*)^2.$$

Why not output from SAS?

Note: Ridge regression gives the same estimate as the Bayesian posterior mode of β^* under independent mean-zero normal priors with variance τ^2 on the $\beta_1^*, \ldots, \beta_k^*$. Here, $c = (\sigma^*)^2/\tau^2$.

SAS code & output: body fat data

```
**********
  Body fat data from Chapter 7
***********************
data body;
 input triceps thigh midarm bodyfat @@;
 cards:
 19.5 43.1 29.1 11.9
                        24.7 49.8
                                  28.2 22.8
 30.7 51.9 37.0 18.7
                       29.8 54.3 31.1 20.1
 19.1 42.2 30.9 12.9
                       25.6
                             53.9 23.7 21.7
 31.4 58.5 27.6 27.1
                             52.1
                       27.9
                                  30.6 25.4
 22.1 49.9
            23.2 21.3
                       25.5
                             53.5
                                   24.8 19.3
 31.1 56.6
            30.0 25.4
                        30.4
                             56.7
                                   28.3 27.2
            23.0 11.7
                       19.7 44.2
 18.7 46.5
                                   28.6 17.8
            21.3 12.8
 14.6 42.7
                       29.5
                             54.4
                                  30.1 23.9
 27.7 55.3 25.7 22.6 30.2 58.6
                                  24.6 25.4
 22.7 48.2 27.1 14.8 25.2 51.0 27.5 21.1
run:
proc reg data=body outest=ridge outvif ridge=0.01 to 0.5 by .01;
model bodyfat=triceps thigh midarm:
plot / ridgeplot; run;
* I would probably take c=0.1 or c=0.2 based on the plot;
proc print; run;
proc reg data=body outest=ridge ridge=0.2:
 model bodyfat=triceps thigh midarm; run;
proc print data=ridge; run;
Obs _MODEL_ _TYPE_ _DEPVAR_ _RIDGE_ _PCOMIT_ _RMSE_ Intercept triceps thigh midarm bodyfat
   MODEL1 PARMS bodyfat
                                         2.47998
                                                  117.085 4.33409 -2.85685 -2.18606
                                                                                     -1
   MODEL1 RIDGE bodyfat
                           0.2
                                         2.65543
                                                   -9.202 0.39789 0.42405 -0.08581
```



Ridge regression in R

lm.ridge provides a function for performing ridge regression in R. You can use generalized cross-validation (Golub, Heath, and Wahba, 1979 Technometrics) to choose the best c. This is preferable to PRESS. A newer package ridge uses a different method for choosing c and provides p-values for the best ridge model.

```
library(MASS)
bodyfat=read.table("http://www.stat.sc.edu/~hansont/stat704/bodyfat.txt",
    header=T)
f=lm.ridge(bodyfat~triceps+thigh+midarm,data=bodyfat,lambda=seq(0,2,by=0.005))
plot(f)
select(f) # gives c=0.02
f=lm.ridge(bodyfat~triceps+thigh+midarm,data=bodyfat,lambda=0.02)
coef(f) # no standard errors...B0000!!!
library(ridge) # uses c selection based on PCA
f=linearRidge(bodyfat~triceps+thigh+midarm,data=bodyfat)
summary(f) # p-values!!! hooray!!!
```

Penalized least-squares (p. 436) formulation of ridge regression:

$$Q_{pen} = \sum_{i=1}^{n} (Y_i^* - (\mathbf{x}_i^*)' \mathbf{b}^R)^2 + c \sum_{j=1}^{k} (b_j^R)^2.$$

The solution is \mathbf{b}^R that minimizes Q_{pen} .

LASSO chooses \mathbf{b}^L to minimize

$$\sum_{i=1}^{n} (Y_{i}^{*} - (\mathbf{x}_{i}^{*})'\mathbf{b}^{L})^{2} + c \sum_{j=1}^{k} |b_{j}^{L}|$$

In LASSO, this constraint leads to some b_j^L 's set exactly to zero, so LASSO can be viewed as a method of variable selection as well as coefficient estimation.

Traditionally ridge regression estimates have been easier to obtain (computationally) than LASSO estimates. However, recent advances allow for the routine use of LASSO. LASSO for variable selection is in the new SAS PROC GLMSELECT.

LASSO on the bodyfat data

```
proc glmselect data=body plot=coefficients;
* can also have class statement;
* default for LASSO picks model w/ smallest BIC (i.e. SBC);
* plot is each coefficient as c is increased;
  model bodyfat=triceps thigh midarm / selection=lasso;
run;
```

PROC GLMSELECT stops with the model that has the lowest BIC.

Compare the LASSO coordinate evolution plot to that obtained via ridge regression. Question: are the coefficients for the standardized model, or unstandardized? Looks like the latter.

In R packages the biasing constant (and therefore \mathbf{b}^{L}) can be estimated via cross-validation, but not in SAS.