Chapter 11

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I
11.1: Weighted least squares

- Chapters 3 and 6 discuss transformations of x_1, \ldots, x_k and/or Y.
- This is “quick and dirty” but may not solve the problem.
- Or can create an uninterpretable mess (book: “inappropriate”).
- More advanced remedy: *weighted least squares* regression.
- Model is as before

$$Y_i = \beta_0 + \beta_1 x_{i1} + \cdots \beta_k x_{ik} + \epsilon_i,$$

but now

$$\epsilon_i \overset{ind.}{\sim} N(0, \sigma_i^2).$$

Note the subscript on σ_i...
Here \(\text{var}(Y_i) = \sigma_i^2 \). Give observations with higher variance less weight in the regression fitting.

Say \(\sigma_1, \ldots, \sigma_n \) are known. Let \(w_i = 1/\sigma_i^2 \) and define the weight matrix

\[
W = \begin{bmatrix}
 w_1 & 0 & \cdots & 0 \\
 0 & w_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & w_n
\end{bmatrix} = \begin{bmatrix}
 \sigma_1^{-2} & 0 & \cdots & 0 \\
 0 & \sigma_2^{-2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & \sigma_n^{-2}
\end{bmatrix}.
\]

Maximizing the likelihood (pp. 422-423) gives the estimates for \(\beta \):

\[
b_w = (XWX')^{-1}X'WY.
\]
However, $\sigma_1, \ldots, \sigma_n$ are almost always unknown.

If the mean function is appropriate, then $E(e_i^2) = \sigma_i^2(1 - h_{ii})$ where e_i is obtained from ordinary least squares, so e_i^2 estimates σ_i^2 and $|e_i|$ estimates σ_i (pp. 424-425) as $h_{ii} \to 0$ as $n \to \infty$.

Look at plots of $|e_i|$ from a normal fit against predictors in the model and the fitted values \hat{Y}_i to see how σ_i changes with predictors or fitted values.

For example, if $|e_i|$ increases linearly with $\hat{Y}_i = x_i' b$, then we’ll fit $|e_i| = \alpha_0 + \alpha_1 x_{i1} + \cdots + \alpha_k x_{ik} + \delta_i$ and obtain the fitted values $\hat{|e_i|}$.

If e_i^2 increases linearly with only x_{i4}, then we’ll fit $e_i^2 = \alpha_0 + \alpha_4 x_{i4} + \delta_i$ and obtain the fitted values $\hat{e_i}^2$.
1 Regress Y against predictor variable(s) as usual (OLS) & obtain e_1, \ldots, e_n & $\hat{Y}_1, \ldots, \hat{Y}_n$.

2 Regress $|e_i|$ against predictors x_1, \ldots, x_k or fitted values \hat{Y}_i.

3 Let \hat{s}_i be the fitted values for the regression in 2.

4 Define $w_i = 1/\hat{s}_i^2$ for $i = 1, \ldots, n$.

5 Use $b_w = (X'WX)^{-1}X'WY$ as estimated coefficients – automatic in SAS. SAS will also use the correct $\text{cov}(b_w) = (X'WX)^{-1}$ (p. 423). This is developed formally in linear models.
SAS code: initial fit

* SAS example for Weighted Least Squares ;
* Blood pressure data in Table 11.1 ;

data bloodp; input age dbp @@;
datalines;
27 73 21 66 24 75 25 71 23 70 20 65
20 70 29 79 24 72 25 68 28 67 26 79 38 91
32 76 33 69 31 66 34 73 37 78 38 87 33 76
35 79 30 73 31 80 37 68 39 75 46 89 49 101
40 70 42 72 43 80 46 83 43 75 44 71 46 80
47 96 45 92 49 80 48 70 40 90 42 85 55 76
54 71 57 99 52 86 53 79 56 92 52 85 50 71
59 90 50 91 52 100 58 80 57 109
; run;

* Regress the response, dbp, against the predictor, age ;
* The plots show definite nonconstant error variance ;
proc reg data=bloodp;
 model dbp=age;
 output out=temp r=residual;
 plot dbp*age r.*age;
run;
Chapter 11

11.1 Unequal variance rem. measure: Weighted least squares
11.2 Multicollinearity rem. measure: Ridge regression

$\text{dbp} = 56.157 + 0.58 \text{age}$
Chapter 11

11.1 Unequal variance rem. measure: Weighted least squares

11.2 Multicollinearity rem. measure: Ridge regression

\[\text{dbp} = 56.157 \times \text{age} + 0.58 \]

\[\begin{array}{c}
N \\
54 \\
Rsq \\
0.4077 \\
\text{AdjRsq} \\
0.3963 \\
\text{RMSE} \\
8.1457
\end{array} \]
* Plot of absolute residuals against age shows that absolute residuals increase approximately linearly;
data temp; set temp; absr = abs(residual); run;
symbol1 v=dot h=0.8;
axis1 order=(0 to 20 by 5);
proc gplot data=temp; PLOT absr*age/ vaxis=axis1; run;
SAS code: WLS fit

* Regress absolute residuals against the age ;
* This second regression is done on the data set temp ;
proc reg data=temp;
 model absr=age;
 output out=temp1 p=s_hat ;
run;

* Define weights using the fitted values from this second regression ;
data temp1; set temp1; w=1/(s_hat**2); run;

* Using the WEIGHT option in PROC REG to get the WLS estimates ;
* This last regression is done on the data set temp1 ;
proc reg data=temp1;
 weight w;
 model dbp=age / clb;
 output out=temp2 r=residual;
 plot dbp*age r.*age;
run;
The REG Procedure
Dependent Variable: dbp

Weight: w

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>83.34082</td>
<td>83.34082</td>
<td>56.64</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>52</td>
<td>76.51351</td>
<td>1.47141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>53</td>
<td>159.85432</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 1.21302 R-Square 0.5214
Dependent Mean 73.55134 Adj R-Sq 0.5122
Coeff Var 1.64921

Parameter Estimates

| Variable | DF | Parameter | Standard Error | t Value | Pr > |t| | 95% Confidence Limits |
|----------|----|-----------|----------------|---------|-------|----------------------|----------------------|
| Intercept | 1 | Estimate 55.56577 | 2.52092 | 22.04 | <.0001 | 50.50718 | 60.62436 |
| age | 1 | 0.59634 | 0.07924 | 7.53 | <.0001 | 0.43734 | 0.75534 |
• se(b_1) reduced from 0.097 (OLS) to 0.079 (WLS). WLS verified via bootstrap on pp. 462–463 (just FYI).

• R^2 no longer interpreted the same way in terms of amount of total variability explained by model.

• In WLS, standard inferences about coefficients may not be valid for small sample sizes when weights are estimated from the data.

• If MSE of the WLS regression is near 1, then our estimation of the “error standard deviation” function is okay. Here it’s 1.21.
Fitting the model directly...

- A drawback of this approach is that the weights $w_i = 1/\hat{s}_i^2$ have associated variability that is not reflected in $\text{cov}(b_w)$.
- It is possible to fit the implied model

$$Y_i = \beta_0 + \beta_1 a_i + \epsilon_i, \quad \epsilon_i \sim N(0, \tau_0 + \tau_1 a_i),$$

directly in SAS. One option is to have SAS maximize the associated likelihood in PROC NLMIXED.
- Note that a similar, and possibly more appropriate, model

$$Y_i = \beta_0 + \beta_1 a_i + \epsilon_i, \quad \epsilon_i \sim N(0, e^{\tau_0 + \tau_1 a_i}),$$

was used for the Breusch-Pagan test $H_0 : \tau_1 = 0$ described in Sections 3.6 and 6.8. This model can also be fit easily in PROC NLMIXED.
- However, things like F-tests go out the window and everything relies on asymptotics (which for large enough samples work fine).
Chapter 11

11.1 Unequal variance rem. measure: Weighted least squares
11.2 Multicollinearity rem. measure: Ridge regression

SAS code: fitting model directly

* Model fit directly using PROC NLMIXED ;
* Starting values obtained from regressions 1 and 2 ;
proc nlmixed data=bloodp;
 parms beta0=50 beta1=0.5 tau0=-1 tau1=0.2;
 mu=beta0+beta1*age; sigma=tau0+tau1*age;
 model dbp ~ normal(mu,sigma*sigma);
run;

With abridged output

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood 362.5
AIC (smaller is better) 370.5
BIC (smaller is better) 378.5

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
<th>Alpha</th>
<th>Lower</th>
<th>Upper</th>
<th>Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta0</td>
<td>55.5317</td>
<td>2.4689</td>
<td>54</td>
<td>22.49</td>
<td><.0001</td>
<td></td>
<td>0.05</td>
<td>50.5819</td>
<td>60.4815</td>
<td>3.678E-6</td>
<td></td>
</tr>
<tr>
<td>beta1</td>
<td>0.5973</td>
<td>0.0781</td>
<td>54</td>
<td>7.65</td>
<td><.0001</td>
<td></td>
<td>0.05</td>
<td>0.4407</td>
<td>0.7539</td>
<td>0.000108</td>
<td></td>
</tr>
<tr>
<td>tau0</td>
<td>-2.0367</td>
<td>1.7585</td>
<td>54</td>
<td>-1.16</td>
<td>0.2519</td>
<td></td>
<td>0.05</td>
<td>-5.5622</td>
<td>1.4889</td>
<td>4.053E-6</td>
<td></td>
</tr>
<tr>
<td>tau1</td>
<td>0.2414</td>
<td>0.0555</td>
<td>54</td>
<td>4.34</td>
<td><.0001</td>
<td></td>
<td>0.05</td>
<td>0.1300</td>
<td>0.3528</td>
<td>0.000067</td>
<td></td>
</tr>
</tbody>
</table>
Before considering ridge regression, recall that even serious multicollinearity does not present a problem when the focus is on prediction, and prediction is limited to the overall pattern of predictors in the data. Use $x_h'(X'X)^{-1}x_h$ for predictor x_h and compare to the rest of the leverages.

Principle components provide composite “predictors” that are uncorrelated. Under umbrella term of “dimension reduction.”

Ridge regression is an advanced remedial measure for multicollinearity that uses a biased estimate \hat{b}^R instead of the OLS \hat{b}.

Although biased, it may have less variance – one of the effects of multicollinearity was exploding $se(b_k)$. See Fig. 11.2 (p. 432).
Ridge regression adds a biasing constant c to the normal equations based on the standardized regression model developed in Section 7.5 (also used for VIFs in 10.5); read pp. 273–275 and p. 433.

$c = 0 \Rightarrow$ OLS estimator b.

Bias in the estimator b^R increases/decreases with c.

VIFs/R^2 decrease with increasing c.

Look at plots of b_j^R and VIF_j versus c to see when estimates and variance inflation stabilize. Can get these automatically in SAS.

Note no standard errors when choosing c by eye. Need to use bootstrap; not automatic in SAS.

Ridge regression is related to the LASSO; more in a minute...
Standard error for fixed c

Page 433. Working with standardized model

$$Y_i^* = \beta_1^* x_{i1} + \cdots \beta_k^* x_{ik} + \epsilon_i^*.$$

$$b^R = ((X^*)'X^* + cI)^{-1}(X^*)'Y^*.$$

So

$$cov(b^R) = ((X^*)'X^* + cI)_k^{-1}(X^*)'(X^*)((X^*)'X^* + cI)^{-1}(\sigma^*)^2.$$

Why not output from SAS?

Note: Ridge regression gives the same estimate as the Bayesian posterior mode of β^* under independent mean-zero normal priors with variance τ^2 on the $\beta_1^*, \ldots, \beta_k^*$. Here, $c = (\sigma^*)^2/\tau^2$.
SAS code & output: body fat data

```sas
* Body fat data from Chapter 7;
;
Data body;
  input triceps thigh midarm bodyfat @@;
  cards;
   19.5  43.1  29.1  11.9  24.7  49.8  28.2  22.8
   30.7  51.9  37.0  18.7  29.8  54.3  31.1  20.1
   19.1  42.2  30.9  12.9  25.6  53.9  23.7  21.7
   31.4  58.5  27.6  27.1  27.9  52.1  30.6  25.4
   22.1  49.9  23.2  21.3  25.5  53.5  24.8  19.3
   31.1  56.6  30.0  25.4  30.4  56.7  28.3  27.2
   18.7  46.5  23.0  11.7  19.7  44.2  28.6  17.8
   14.6  42.7  21.3  12.8  29.5  54.4  30.1  23.9
   27.7  55.3  25.7  22.6  30.2  58.6  24.6  25.4
   22.7  48.2  27.1  14.8  25.2  51.0  27.5  21.1
; run;
```

```sas
/* I would probably take c=0.1 or c=0.2 based on the plot; */
proc print; run;
```

```sas
/* I would probably take c=0.1 or c=0.2 based on the plot; */
proc reg data=body outest=ridge outvif ridge=0.01 to 0.5 by .01;
  model bodyfat=triceps thigh midarm;
  plot / ridgeplot; run;
```

```sas
/* I would probably take c=0.1 or c=0.2 based on the plot; */
proc print; run;
```

```sas
proc reg data=body outest=ridge ridge=0.2;
  model bodyfat=triceps thigh midarm; run;
```

```sas
proc print data=ridge; run;
```

```
Obs      _MODEL_   _TYPE_   _DEPVAR_   _RIDGE_   _PCOMIT_   _RMSE_   Intercept   triceps   thigh   midarm   bodyfat
1  MODEL1       PARMS   bodyfat    .         .        2.47998    117.085     4.33409    -2.85685    -2.18606    -1
2  MODEL1       RIDGE   bodyfat    0.2       .        2.65543    -9.202      0.39789     0.42405   -0.08581    -1
```
Chapter 11

11.1 Unequal variance rem. measure: Weighted least squares
11.2 Multicollinearity rem. measure: Ridge regression

\[
\text{bodyfat} = 117.08 + 4.3341 \text{ triceps} - 2.8568 \text{ thigh} - 2.1861 \text{ midarm}
\]
lm.ridge provides a function for performing ridge regression in R. You can use generalized cross-validation (Golub, Heath, and Wahba, 1979 *Technometrics*) to choose the best c. This is preferable to PRESS. A newer package ridge uses a different method for choosing c and provides p-values for the best ridge model.

```r
library(MASS)
bodyfat=read.table("http://www.stat.sc.edu/~hansont/stat704/bodyfat.txt", header=T)
f=lm.ridge(bodyfat~triceps+thigh+midarm,data=bodyfat,lambda=seq(0,2,by=0.005))
plot(f)
select(f) # gives c=0.02
f=lm.ridge(bodyfat~triceps+thigh+midarm,data=bodyfat,lambda=0.02)
coef(f) # no standard errors...BOOOO!!!

library(ridge) # uses c selection based on PCA
f=linearRidge(bodyfat~triceps+thigh+midarm,data=bodyfat)
summary(f) # p-values!!! hooray!!!
```
Penalized least-squares (p. 436) formulation of ridge regression:

\[
Q_{pen} = \sum_{i=1}^{n} (Y_i^* - (x_i^*)'b^R)^2 + c \sum_{j=1}^{k} (b_j^R)^2.
\]

The solution is \(b^R\) that minimizes \(Q_{pen}\).
LASSO chooses b^L to minimize

$$
\sum_{i=1}^{n} (Y_i^* - (x_i^*)'b^L)^2 + c \sum_{j=1}^{k} |b_j^L|
$$

In LASSO, this constraint leads to some b_j^L’s set exactly to zero, so LASSO can be viewed as a method of variable selection as well as coefficient estimation.

Traditionally ridge regression estimates have been easier to obtain (computationally) than LASSO estimates. However, recent advances allow for the routine use of LASSO. LASSO for variable selection is in the new SAS PROC GLMSELECT.
proc glmselect data=body plot=coefficients;
* can also have class statement;
* default for LASSO picks model w/ smallest BIC (i.e. SBC);
* plot is each coefficient as c is increased;
 model bodyfat=triceps thigh midarm / selection=lasso;
run;

PROC GLMSELECT stops with the model that has the lowest BIC.

Compare the LASSO coordinate evolution plot to that obtained via ridge regression. Question: are the coefficients for the standardized model, or unstandardized? Looks like the latter.

In R packages the biasing constant (and therefore b^L) can be estimated via cross-validation, but not in SAS.