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PRESSp criterion

PRESSp =
n∑

i=1

(Yi − Ŷi(i))
2

(
=

n∑
i=1

[
ei

1− hii

]2
)
,

where Ŷi(i) is the fitted value at xi with the (xi ,Yi ) omitted.

This is leave-one-out prediction error. The smaller, the better.

Having PRESSp ≈ SSEp supports the validity of the model
with p predictors (p. 374). Note that always PRESSp > SSEp,
but when they’re (reasonably) close, that means that there
are not just a handful of points driving all inference.
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9.5 Caveats for automated procedures

proc reg can give you the the, say, three best subsets
according to Cp containing one variable, two variables, etc.
Need to define interactions & quadratic terms by hand.
Cannot do it heirarchically. Best to do when number of
predictors is small to moderate.

proc glmselect does a great job with stepwise procedures
but cannot do best subsets. Good to use when there’s lots of
predictors.

There is no “best” way to search for good models.

There may be several “good” models.

If you use the same data to estimate the model and choose
the model, the regression effects are biased!

This leads to the idea of data splitting; one portion of the data
is the training data and the other portion is the validation set
(Section 9.6, p. 372). PRESSp can also be used.
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Diagnostics we have already discussed

Residuals ei vs. each x1, . . . , xk and ei vs. Ŷi .

Normal probability plot of e1, . . . , en.

Yi vs. Ŷi . What to look for?

VIFj for j = 1, . . . , k .

Now we’ll discuss added variable plots, leverages, dffits, and
Cook’s distance.
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10.1 Added variable plots

Residuals ei versus predictors can show whether a predictor
may need to be transformed or whether we should add a
quadratic term.

We can omit the predictor from the model and plot the
residuals ei versus the predictor to see if the predictor explains
residual variability. Your book suggests doing this for
interactions.

An added variable plot refines this idea.

Answers question: Does xj explain any residual variability
once the rest of the predictors are in the model?
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10.1 Added variable plots

Consider a pool of predictors x1, . . . , xk . Let’s consider
predictor xj where j = 1, . . . , k .

Regress Yi vs. all predictors except xj , call the residuals
ei (Y |x−j).

Regress xj vs. all predictors except xj , call the residuals
ei (xj |x−j).

The added variable plot for xj is ei (Y |x−j) vs. ei (xj |x−j).

The least squares estimate bj obtained from fitting a line
(through the origin) to the plot is the same as one would get
from fitting the full model Yi = β0 + β1xi1 + · · ·βkxik + εi
(Christensen, 1996).

Gives an idea of the functional form of xj : a transformation in
xj should mimic the pattern seen in the plot; the methods of
Section 3.9 apply.
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Salary data, main effects only

Partial residual plots are only in proc reg so need to create
dummies for political affiliation.

data salary;

input salary age educ pol$ @@; dem=0; rep=0; if pol=’D’ then dem=1; if pol=’R’ then rep=1;

datalines;

38 25 4 D 45 27 4 R 28 26 4 O 55 39 4 D 74 42 4 R 43 41 4 O

47 25 6 D 55 26 6 R 40 29 6 O 65 40 6 D 89 41 6 R 56 42 6 O

56 32 8 D 65 33 8 R 45 35 9 O 75 39 8 D 95 65 9 R 67 69 10 O

;

ods graphics on;

proc reg;

model salary=age educ dem rep / partial; run;

ods graphics off;

------------------------------------------------------------------------------------------

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.49091 8.17996 0.06 0.9531

age 1 0.89835 0.19677 4.57 0.0005

educ 1 1.50395 1.18415 1.27 0.2263

dem 1 16.54042 4.88073 3.39 0.0048

rep 1 25.69912 4.75121 5.41 0.0001
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Partial residual plots

Age effect is nonlinear; let’s add a quadratic term.
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Salary data, quadratic effect in age

data salary;

input salary age educ pol$ @@; dem=0; rep=0; if pol=’D’ then dem=1; if pol=’R’ then rep=1;

agesq=age*age;

datalines;

38 25 4 D 45 27 4 R 28 26 4 O 55 39 4 D 74 42 4 R 43 41 4 O

47 25 6 D 55 26 6 R 40 29 6 O 65 40 6 D 89 41 6 R 56 42 6 O

56 32 8 D 65 33 8 R 45 35 9 O 75 39 8 D 95 65 9 R 67 69 10 O

;

ods graphics on;

proc reg;

model salary=age agesq educ dem rep / partial; run;

ods graphics off;

------------------------------------------------------------------------------------------

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -54.67928 16.72601 -3.27 0.0067

age 1 3.46372 0.74067 4.68 0.0005

agesq 1 -0.02883 0.00817 -3.53 0.0041

educ 1 2.16648 0.88337 2.45 0.0305

dem 1 15.45511 3.57115 4.33 0.0010

rep 1 25.57325 3.46366 7.38 <.0001
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Partial residual plots w/ quadratic age

Now education is nonlinear, but it is now significant! The incorrect
functional form for age (the effect levels off) was masking the
importance of education.
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Salary data, quadratic effect in age

data salary;

input salary age educ pol$ @@; dem=0; rep=0; if pol=’D’ then dem=1; if pol=’R’ then rep=1;

agesq=age*age; educsq=educ*educ;

datalines;

38 25 4 D 45 27 4 R 28 26 4 O 55 39 4 D 74 42 4 R 43 41 4 O

47 25 6 D 55 26 6 R 40 29 6 O 65 40 6 D 89 41 6 R 56 42 6 O

56 32 8 D 65 33 8 R 45 35 9 O 75 39 8 D 95 65 9 R 67 69 10 O

;

ods graphics on;

proc reg;

model salary=age agesq educ educsq dem rep / partial; run;

ods graphics off;

------------------------------------------------------------------------------------------

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -89.95426 17.86654 -5.03 0.0004

age 1 2.78703 0.62615 4.45 0.0010

agesq 1 -0.01868 0.00730 -2.56 0.0266

educ 1 18.75132 5.73911 3.27 0.0075

educsq 1 -1.34234 0.46111 -2.91 0.0142

dem 1 13.97691 2.84888 4.91 0.0005

rep 1 23.47204 2.81306 8.34 <.0001

Question: what amount of education is “optimal?”
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Outliers

Outliers are bizarre data points. Observations may be outlying
relative only to other predictors xi = (1, xi1, . . . , xik)′ or
relative to the model, i.e. Yi relative to Ŷi .

Studentized deleted residuals are designed to detect outlying
Yi observations; leverages detect outlying xi points.

Outliers have the potential to influence the fitted regression
function; they may strengthen inference and reduce error in
predictions if the outlying points follow the modeling
assumptions and are representative.

If not, outlying values may skew inference unduly and yield
models with poor predictive properties.
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Outliers & influential points

Often outliers are “flagged” and deemed suspect as mistakes
or observations not gathered from the same population as the
other observations.

Sometimes outliers are of interest in their own right and may
illustrate aspects of a data set that bear closer scrutiny.

Although an observation may be flagged as an outlier, the
point may or may not affect the fitted regression function
more than other points.

A DFFIT is a measure of influence that an individual point
(xi ,Yi ) has on the regression surface at xi .

Cook’s distance is a consolidated measure of influence the
point (xi ,Yi ) has on the regression surface at all n points
x1, . . . , xn.
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10.2 Studentized deleted residuals

The standardized residuals

ri =
Yi − Ŷi√

MSE (1− hii )

have a constant variance of 1.
Typically, |ri | > 2 is considered “large.” hii = x′i (X′X)−1xi is
the i th leverage value.
A refinement of the standardized residual that has a
recognizable distribution is the studentized deleted residual

ti = ri

√
MSE

MSE (i)

where MSE(i) is the mean squared error calculated from a

multiple regression with the same predictors but the i th

observation removed.
The studentized deleted residual ti will be larger that a regular
studentized residual ri if and only if MSE(i) < MSE .
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Studentized deleted residuals

Recall that MSE is an estimated of the error variance σ2; if
including the point (xi ,Yi ) in the analysis increases our
estimate of σ2, then the deleted residual will be larger than
the regular residual.

Studentized deleted residuals have a computationally
convenient formula (in your book) and are distributed

ti ∼ t(n − p − 1).

Therefore, outlying Y -values may be flagged by using
Bonferroni’s adjustment and taking

|ti | > t(1− α/(2n); n − p − 1)

as outlying.

Typically, in practice, one simply flags observations with |ti |
larger than t(1− α/2; n − p − 1) as possibly outlying in
consideration with other diagnostics to be discussed shortly.
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10.3 Leverage

The leverages hii get larger the further the points xi are from
the mean x̄ = 1

n

∑n
i=1 xi , adjusted for “how many” other

predictors are in the vicinity of xi .

We may use the fact that H = X(X′X)−1X′ = HH to show∑n
i=1 hii = p and 0 ≤ hii ≤ 1.

A large leverage hii indicates that xi is far away from the
other predictors xj , j 6= i and that xi may influence the fitted

value Ŷi more than other xj ’s will influence their respective
fitted values. This is evident in the variance of the residual
var(Yi − Ŷi ) = σ2

√
(1− hii ). The larger hii is, the smaller

var(Yi − Ŷi ) will be and hence the closer Ŷi will be to Yi on
average.

The rule of thumb is that any leverage hii that is larger than
twice the mean leverage p/n, i.e. hii > 2p/n, is flagged as
having “high” leverage.
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Leverage

Note that the leverages hii depend only on the xi and hence
indicate which points might potentially be influential.

(p. 400) When making predictions xn+1 at a point not in the
data set, we consider the measure of distance of this point
from the points x1, . . . , xn given by hn+1 = x′n+1(X′X)−1xn+1.

If hn+1 is much larger than any of the {h11, . . . , hnn} you may
be extrapolating far outside the general region of your data.

Just include an empty response (a period) in the data, but
with the xn+1 information. SAS will give you hn+1 along with
the other leverages.
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10.4 DFFITS

The i th DFFIT , denoted DFFITi , is given by

DFFITi =
Ŷi − Ŷi(i)√

MSE(i)hii
= ti

√
hii

1− hii
,

where Ŷi is fitted value of regression surface (calculated using
all n observations) at xi and Ŷj(i) is fitted value of regression
surface omitting the point (xi ,Yi ) at the point xj .

DFFITi is standardized distance between fitted regression
surfaces with and without the point (xi ,Yi ).

Rule of thumb that DFFITi is “large” when |DFFITi | > 1 for
small to medium-sized data sets and |DFFITi | > 2

√
p/n for

large data sets. We will often just note those DFFITi ’s that
are considerably larger than the bulk of the DFFITi ’s.
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10.4 Cook’s distance

The i th Cook’s distance, denoted Di , is an aggregate measure
of the influence of the i th observation on all n fitted values:

Di =

∑n
j=1(Ŷi − Ŷj(i))

2

p(MSE )
.

This is the sum of squared distances, at each xj , between
fitted regression surface calculated with all n points and fitted
regression surface calculated with the i th case removed,
standardized by p(MSE ).

Look for values of Cook’s distance significantly larger than
other values; these are cases that exert disproportionate
influence on the fitted regression surface as a whole.
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Review of diagnostics

Variance inflation factors VIFj tell you which predictors are
highly correlated with other predictors. If you have one or
more VIFj > 10, you may want to eliminate some of the
predictors.

Multicollinearity affects the interpretation of the model, but
does not indicate the model is “bad” in any way.

An alternative approach that allows keeping correlated
predictors is ridge regression (Chapter 11).

Deleted residuals ti ∼ tn−p−1, so you can formally define an
outlier as being larger than tn−p−1(1− α/(2n)).
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Review of diagnostics

Residual plots. Plots of ei or ti vs. Ŷi and versus each
x1, . . . , xk help assess (a) correct functional form, (b) constant
variance, and (c) outlying observations. If an anomaly is
apparent in any of these plots I may look at an added variable
plot. If the number of predictors is small I may look at every
added variable plot. These plots indicate problems such as
non-constant variance and the appropriateness of a plane as a
regression surface. They may also suggest a transformation
for a predictor or two.

Heteroscedasticy can be corrected by transforming Y , or else
modeling the variance directly (Chapter 11).
Constant variance but nonlinear patterns can be
accommodated by introducing quadratic terms.

Added variable plots help figure out functional form of
predictors, and whether significance is being driven by one or
two points only.

proc transreg and proc gam fit models where every
predictor can be transformed simultaneously.
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Review of diagnostics

DFFITi and Cook’s distance Di tell you which observations
influence the fitted model the most. Sometimes one or two
points can drive the significance of an effect.

Leverages tell you which points can potentially influence the
fitted model. Useful for finding “hidden extrapolations” via
hn+1.

(pp. 404–405) DFBETAij tells you how much observation i
affects regression coefficient j . Useful to “zoom in” on where
influential points are affecting the model.

A normal probability plot of the residuals will indicate gross
departures from normality.

A list of the studentized deleted residuals, leverages, and
Cook’s distances helps to determine outlying values that may
be transcription errors or data anomalies and also indicates
those observations that affect the fitted regression surface as
a whole.
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Standard SAS diagnostic plots

ti vs. hi . Which observations are outlying in x-direction,
outlying in Y -direction, or both?

Di vs. i . Which observations grossly affect fit of regression
surface?

ei vs. Ŷi and ti vs. Ŷi . Constant variance & linearity.

Yi vs. Ŷi ; how well model predicts its own data. Better
models have points close to line y = x .

Normal probability plot of the e1, . . . , en.

Histogram of e1, . . . , en.

Plots of ei vs. each predictor x1, . . . , xk .

One more plot that I never look at.
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Arterial pressure data in proc glm

Model is Yi = β0 + β1xi1 + β2xi2 + β12xi1xi2 + εi . One highly
influential point & one poorly fit.
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Arterial pressure data in proc glm

These look pretty good, aside from the one large residual.
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Arterial pressure data in proc glm

proc glm recognizes that there are only two variables and plots a
response surface automatically.
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Arterial pressure data in proc glm

proc glm;

model y=x1 x2 x1*x2;

output out=out cookd=c rstudent=r; run;

proc print; var x1 x2 y c r; run;

--------------------------------------------------------------------

Obs x1 x2 y c r

1 45 36 49 0.36904 2.20950

2 30 28 55 0.00383 0.39889

3 11 16 85 0.12052 -0.62921

4 30 46 32 0.00885 -0.60493

5 39 76 26 0.01498 0.51721

6 42 78 28 0.02392 0.66178

7 17 24 95 0.45892 3.31414

8 63 80 26 4.99081 -1.77941

9 25 12 74 0.00724 0.33794

10 32 27 37 0.04100 -1.22324

11 37 37 31 0.01660 -0.71526

12 29 34 49 0.00032 0.12816

13 26 32 38 0.04023 -1.45743

14 38 45 41 0.01271 0.69211

15 38 99 12 0.00817 0.18206

16 25 38 44 0.00422 -0.40213

17 27 51 29 0.02196 -0.70921

18 37 32 40 0.00014 -0.05730

19 34 40 31 0.01371 -0.80210

Obs. 7 has largest arterial pressure. Obs. 8 has relatively small
arterial pressure.
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Two subsets

proc glm data=out; model y=x1 x2 x1*x2; run;

-----------------------------------------------------------------

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 134.3998664 15.98159869 8.41 <.0001

x1 -2.1330220 0.52215739 -4.09 0.0010

x2 -1.6993299 0.36366865 -4.67 0.0003

x1*x2 0.0333471 0.00928281 3.59 0.0027

-----------------------------------------------------------------

proc glm data=out(where=(c<4)); model y=x1 x2 x1*x2; run;

-----------------------------------------------------------------

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 157.5094488 19.79515582 7.96 <.0001

x1 -2.7122125 0.58667658 -4.62 0.0004

x2 -2.7743376 0.69321545 -4.00 0.0013

x1*x2 0.0618590 0.01822201 3.39 0.0044

-----------------------------------------------------------------

proc glm data=out(where=(abs(r)<3)); model y=x1 x2 x1*x2; run;

-----------------------------------------------------------------

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 116.3928224 13.52293668 8.61 <.0001

x1 -1.6161083 0.43361763 -3.73 0.0023

x2 -1.4903775 0.28875668 -5.16 0.0001

x1*x2 0.0272510 0.00742428 3.67 0.0025

How do 7 and 8 affect the significance and/or magnitude of the
effects?
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More examples...

Surgical unit data.

Salary data.

Body fat data.
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