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Generalized additive models

Consider a linear regression problem:

Yi = β0 + β1xi1 + β2xi2 + εi ,

where e1, . . . , en
iid∼ N(0, σ2).

Diagnostics (residual plots, added variable plots) might
indicate poor fit of the basic model above.

Remedial measures might include transforming the response,
transforming one or both predictors, or both.

One also might consider adding quadratic terms and/or an
interaction term.

Note: we only consider transforming continuous predictors!
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When considering a transformation of one predictor, an added
variable plot can suggest a transformation (e.g. log(x), 1/x) that
might work if the other predictor is “correctly” specified.

In general, a transformation is given by a function x∗ = g(x). Say
we decide that xi1 should be log-transformed and the reciprocal of
xi2 should be used. Then the resulting model is

Yi = β0 + β1 log(xi1) + β2/xi2 + εi

= β0 + gβ1(xi1) + gβ2(xi2) + εi ,

where gβ1(x) and gβ2(x) are two functions specified by β1 and β2.
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Here we are specifying forms for g1(x |β1) and g2(x |β2) based on
exploratory data analysis, but we could from the outset specify
models for g1(x |θ1) and g2(x |θ2) that are rich enough to capture
interesting and predictively useful aspects of how the predictors
affect the response and estimate these functions from the data.

One example of this is through an basis expansion; for the jth
predictor the transformation is:

gj(x) =

Kj∑
k=1

θjkψjk(x),

where {ψjk(·)}Kj

k=1 are B-spline basis functions, or sines/cosines,
etc. This approach has gained more favor from Bayesians, but is
not the approach taken in SAS PROC GAM. PROC GAM makes
use of cubic smoothing splines.

This is an example of “nonparametric regression,” which ironically
connotes the inclusion of lots of parameters rather than fewer.
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For simple regression data {(xi , yi )}ni=1, a cubic spline smoother
g(x) minimizes

n∑
i=1

(yi − g(xi ))2 + λ

∫ ∞
−∞

g ′′(x)2dx .

Good fit is achieved by minimizing the sum of squares∑n
i=1(yi − g(xi ))2. The

∫∞
−∞ g ′′(x)2dx term measures how wiggly

g(x) is and λ ≥ 0 is how much we will penalize g(x) for being
wiggly.

So the spline trades off between goodness of fit and wiggliness.

Although not obvious, the solution to this minimization is a cubic
spline: a piecewise cubic polynomial with the pieces joined at the
unique xi values.
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Hastie and Tibshirani (1986, 1990) point out that the meaning of
λ depends on the units xi is measured in, but that λ can be picked
to yield an “effective degrees of freedom” df or an “effective
number of parameters” being used in g(x). Then the complexity
of g(x) is equivalent to (df − 1)-degree polynomial, but with the
coefficients “spread out” more yielding a more flexible function
that fits data better.

Alternatively, λ can be picked through cross validation, by
minimizing

CV (λ) =
n∑

i=1

(yi − g−iλ (xi ))2.

Both options are available in SAS.
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We have {(xi , yi )}ni=1, where y1, . . . , yn are normal.

Each of g1(x), . . . , gp(x) are modeled via cubic smoothing splines,
each with their own smoothness parameters λ1, . . . , λp either
specified as df1, . . . , dfp or estimated through cross-validation. The
model is fit through “backfitting.” See Hastie and Tibshirani
(1990) or the SAS documentation for details.

SAS actually fits gj(xj) = βjxj + g̃j(xj), where g̃j(xj) integrates to
zero over the range of xj . Thus one can test H0 : g̃j(·) = 0, i.e. the
usual linear predictor is sufficient for xj .
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Salary data

Let’s fit a GAM to the salary data:

data salary;

input salary age educ pol$ @@;

datalines;

38 25 4 D 45 27 4 R 28 26 4 O 55 39 4 D 74 42 4 R 43 41 4 O

47 25 6 D 55 26 6 R 40 29 6 O 65 40 6 D 89 41 6 R 56 42 6 O

56 32 8 D 65 33 8 R 45 35 9 O 75 39 8 D 95 65 9 R 67 69 10 O

;

proc gam plots=all data=salary; *plots(unpack)=components(clm);

class pol;

model salary=param(pol) spline(age) spline(educ);

run;

I’ll write the model on the board.
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The Analysis of Deviance table gives a χ2-test from comparing the
deviance between the full model and the model with g̃j(xj)
dropped. We see that neither age nor education is nonlinear at the
5% level. The default df = 3 corresponds to a smoothing spline
with the complexity of a cubic polynomial.

The plots oif g̃j(xj) are of the smoothing spline function with the
linear effect removed. The plot includes a 95% confidence band for
the whole curve. We visually inspect where this band does not
include zero to get an idea of where significant nonlinearity occurs.
This plot can suggest simpler transformations of predictor variables
than use of the full-blown smoothing spline much like residual or
added variable plots.
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PROC GAM handles Poisson, Bernoulli, normal, and gamma data
as well as normal (more in STAT 705). If you only have normal
data, PROC TRANSREG will fit a very general transformation
model, for example

h(Yi ) = β0 + g1(xi1) + g2(xi2) + εi ,

and provide estimates of h(·), g1(·), and g2(·).

h(·) can simply be the Box-Cox family, indexed by λ, or a very
general spline function.
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Consider time-to-failure in minutes of n = 50 electrical
components.

Each component was manufactured using a ratio of two types
of materials; this ratio was fixed at 0.1, 0.2, 0.3, 0.4, and 0.5.

Ten components were observed to fail at each of these
manufacturing ratios in a designed experiment.

It is of interest to model the failure-time as a function of the
ratio, to determine if a significant relationship exists, and if so
to describe the relationship simply.
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SAS code: data & plot

data elec;

input ratio time @@;

datalines;

0.5 34.9 0.5 9.3 0.5 6.0 0.5 3.4 0.5 14.9

0.5 9.0 0.5 19.9 0.5 2.3 0.5 4.1 0.5 25.0

0.4 16.9 0.4 11.3 0.4 25.4 0.4 10.7 0.4 24.1

0.4 3.7 0.4 7.2 0.4 18.9 0.4 2.2 0.4 8.4

0.3 54.7 0.3 13.4 0.3 29.3 0.3 28.9 0.3 21.1

0.3 35.5 0.3 15.0 0.3 4.6 0.3 15.1 0.3 8.7

0.2 9.3 0.2 37.6 0.2 21.0 0.2 143.5 0.2 21.8

0.2 50.5 0.2 40.4 0.2 63.1 0.2 41.1 0.2 16.5

0.1 373.0 0.1 584.0 0.1 1080.1 0.1 300.8 0.1 130.8

0.1 280.2 0.1 679.2 0.1 501.6 0.1 1134.3 0.1 562.6

;

proc sgscatter; plot time*ratio; run;
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SAS code: fit h(Yi ) = β0 + g1(xi1) + εi

proc transreg data=elec solve ss2 plots=(transformation obp residuals);

model spline(time) = spline(ratio); run;
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What to do?

The “best” fitted transformations look like log or square roots
for both time and ratio.

The log is also suggested by Box-Cox for time (not shown).
Code: model boxcox(time) = spline(ratio)

Refit the model with these simple functions:

model log(time) = log(ratio)
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Better, but not perfect.

What if we transform Yi first, then look at a simple
scatterplot of the data?

Here is plot of log(time) versus ratio...what transformation
would you suggest for ratio? (We did this in Stat 704...)
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