Stat 704 Homework 4

Carry out all hypothesis tests at the 5% significance level.

- 1. Consider the **brand preference** data of Problem 6.5.
 - (a) Obtain and report the scatterplot matrix; what does it tell you about the relationship between 'liking' Y and each of the predictors x_1 'moisture' and x_2 'sweetness'?
 - (b) Fit the regression model $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$. Report the ANOVA table and the table of regression effects.
 - i. Using the p-value from the F-statistic in the ANOVA table, test H_0 : $\beta_1 = \beta_2 = 0$. What does this imply about β_1 and β_2 ?
 - ii. Report each of b_1 and b_2 along with tests of H_0 : $\beta_1 = 0$ and $\beta_2 = 0$. Can either predictor be dropped in the presence of the other?
 - iii. Intepret both estimated coefficients.
 - (c) Obtain residual plots of e_i vs. \hat{Y}_i , e_i vs. x_{i1} , and e_i vs. x_{i2} . Obtain the normal probability plot and a histogram of the residuals. What do these plots tell you?
 - (d) Use SAS to conduct the Breusch-Pagan test of $H_0: \alpha_1 = \alpha_2 = 0$ in the variance model $\sigma_i = \alpha_0 + \alpha_1 x_{i1} + \alpha_2 x_{i2}$.
 - (e) Report R^2 ; how is it interpreted here?
 - (f) Obtain and interpret an 95% interval estimate of $E\{Y_h\}$ when $x_{h1} = 5$ and $x_{h2} = 4$.
 - (g) Obtain and interpret an 95% prediction interval for a new Y_h when $x_{h1} = 5$ and $x_{h2} = 4$.
 - (h) Obtain and interpret $SSR(x_1|x_2)$ and $SSR(x_2|x_1)$.
 - (i) Obtain $SSR(x_1)$, $SSR(x_2|x_1)$, and verify $SSR(x_1, x_2) = SSR(x_1) + SSR(x_2|x_1)$.
 - (j) Obtain and interpret $R_{Y1|2}^2$ and $R_{Y2|1}^2$.
 - (k) Obtain and interpret the variance inflation factors VIF_1 and VIF_2 .

- 2. Consider the **commercial properties** data of Problem 6.18.
 - (a) Obtain and report the scatterplot matrix; what does it tell you about the relationship between 'rental rate' Y and each of the predictors x_1 'age', x_2 'operating expense', x_3 'vacancy', and 'square footage'?
 - (b) Fit the regression model $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \epsilon_i$. Report the ANOVA table and the table of regression effects.
 - i. Using the p-value from the F-statistic in the ANOVA table, test H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$. What does this imply about β_1 , β_2 , β_3 , and β_4 ?
 - ii. Report each of b_1 , b_2 , b_3 , b_4 along with tests of H_0 : $\beta_j = 0$ for j = 1, 2, 3, 4. Can any predictor be dropped in the presence of the other three?
 - iii. Intepret all four estimated coefficients.
 - (c) Obtain residual plots of e_i vs. \hat{Y}_i , e_i vs. x_{i1} , e_i vs. x_{i2} , e_i vs. x_{i3} , and e_i vs. x_{i4} . Obtain the normal probability plot and a histogram of the residuals. What do these plots tell you?
 - (d) Use SAS to conduct the Breusch-Pagan test of $H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$ in the variance model $\sigma_i = \alpha_0 + \alpha_1 x_{i1} + \alpha_2 x_{i2} + \alpha_3 x_{i3} + \alpha_4 x_{i4}$.
 - (e) Report R^2 ; how is it interpreted here?
 - (f) Problem 6.20. You don't need to find a family of intervals, just compute the 95% interval for each of the four. You can compute the family for extra credit. The easiest way is Bonferroni (p. 159), where you would use alpha=0.0125.
 - (g) Problem 6.21. Ignore the "family confidence interval" part; just find three 95% prediction intervals.
 - (h) Obtain and interpret $SSR(x_1)$, $SSR(x_2|x_1)$, $SSR(x_3|x_1, x_2)$, $SSR(x_4|x_1, x_2, x_3)$.
 - (i) Verify that the above extra sums of squares in (h) sum to $SSR(x_1, x_2, x_3, x_4)$.
 - (j) Obtain and interpret $R_{Y1|234}^2$, $R_{Y2|134}^2$, $R_{Y3|124}^2$, $R_{Y4|123}^2$.
 - (k) Obtain and interpret the variance inflation factors VIF_i for j = 1, 2, 3, 4.
- 3. The following textbook problems: 6.1, 6.22, 7.1 (df for the associated test), 7.2 (what is x_{i1} added on to?), 7.28, 7.29a (use the definition).