
Course information:

• Instructor: Tim Hanson, Leconte 219C, phone 777-3859.

• Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by

appointment.

• Text: Applied Linear Statistical Models (5th Edition), by Kutner,

Nachtsheim, Neter, and Li.

• Online notes at

http://www.stat.sc.edu/∼hansont/stat704/stat704.html

based on David Hitchcock’s notes and the text.

• Grading, et cetera: see syllabus.

• Stat 704 has a co-requisite of Stat 712 (Casella & Berger level

mathematical statistics). You need to be taking this, or have

taken this already.
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Section A.3 Random Variables

def’n: A random variable is defined as a function that maps an

outcome from some random phenomenon to a real number.

• More formally, a random variable is a map or function from the

sample space of an experiment, S, to some subset of the real

numbers R ⊂ R.

• Restated: A random variable measures the result of a random

phenomenon.

Example 1: The height Y of a randomly selected University of

South Carolina statistics graduate student.

Example 2: The number of car accidents Y in a month at the

intersection of Assembly and Gervais.

2



Every random variable has a cumulative distribution function

(cdf) associated with it:

F (y) = P (Y ≤ y).

Discrete random variables have a probability mass function (pmf)

f(y) = P (Y = y) = F (y) − F (y−) = F (y) − lim
x→y−

F (x).

Continuous random variables have a probability density function

(pdf) such that for a < b

P (a ≤ Y ≤ b) =

∫ b

a

f(y)dy.

For continuous random variables, f(y) = F ′(y).

Question: Are the two examples on the previous slide continuous or

discrete?
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Expected value (Casella & Berger 2.3, 2.3)

The expected value, or mean of a random variable is, in general,

defined as

E(Y ) =

∫ ∞

−∞
y dF (y).

For discrete random variables this is

E(Y ) =
∑

y:f(y)>0

y f(y).

For continuous random variables this is

E(Y ) =

∫ ∞

−∞
y f(y)dy.
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Note: If a and c are constants,

E(a + cY ) = a + cE(Y ).

In particular,

E(a) = a

E(cY ) = cE(Y )

E(Y + a) = E(Y ) + a
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Variance

The variance of a random variable measures the “spread” of its

probability distribution. It is the expected squared deviation about the

mean:

var(Y ) = E{[Y − E(Y )]2}.
Equivalently,

var(Y ) = E(Y 2) − [E(Y )]2.

Note: If a and c are constants, var(a + cY ) = c2var(Y ). In

particular,

var(a) = 0

var(cY ) = c2var(Y )

var(Y + a) = var(Y )

Note: The standard deviation of Y is sd(Y ) =
√

var(Y ).
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Example: Suppose Y is the high temperature in Celsius of a

September day in Seattle. Say E(Y ) = 20 and var(Y ) = 10. Let W

be the high temperature in Fahrenheit. Then

E(W ) = E

(

9

5
Y + 32

)

=
9

5
E(Y ) + 32 =

9

5
20 + 32 = 68 degrees.

var(W ) = var

(

9

5
Y + 32

)

=

(

9

5

)2

var(Y ) = 3.24(10) = 32.4 degrees2.

sd(Y ) =
√

var(Y ) =
√

32.4 = 5.7 degrees.
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Covariance (C & B Section 2.5)

For two random variables Y and Z, the covariance of Y and Z is

cov(Y, Z) = E{[Y − E(Y )][Z − E(Z)]}.

Note

cov(Y, Z) = E(Y Z) − E(Y )E(Z).

If Y and Z have positive covariance, lower values of Y tend to

correspond to lower values of Z (and large values of Y with large

values of Z).

Example: X is work experience in years and Y is salary in Euro.

If Y and Z have negative covariance, lower values of Y tend to

correspond to higher values of Z and vice-versa.

Example: X is the weight of a car in tons and Y is miles per gallon.
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If a1, c1, a2, c2 are constants,

cov(a1 + c1Y, a2 + c2Z) = c1c2cov(Y, Z).

Note: by definition cov(Y, Z) = var(Y ).

The correlation coefficient between Y and Z is the covariance

scaled to be between −1 and 1:

corr(Y, Z) =
cov(Y, Z)

√

var(Y )var(Z)
.

If corr(Y, Z) = 0 then Y and Z are uncorrelated.
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Independent random variables (C & B 4.2)

Informally, two random variables Y and Z are independent if

knowing the value of one random variable does not affect the

probability distribution of the other random variable.

Note: If Y and Z are independent, then Y and Z are uncorrelated,

corr(Y, Z) = 0.

However, corr(Y, Z) = 0 does not imply independence in general.

If Y and Z have a bivariate normal distribution then cov(Y, Z) = 0

⇔ Y , Z independent.

Question: what is the formal definition of independence for (Y, Z)?
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Linear combinations of random variables

Suppose Y1, Y2, . . . , Yn are random variables and a1, a2, . . . , an are

constants. Then

E

[

n
∑

i=1

aiYi

]

=

n
∑

i=1

aiE(Yi).

That is,

E [a1Y1 + a2Y2 + · · · + anYn] = a1E(Y1) + a2E(Y2) + · · · + anE(Yn).

Also,

var

[

n
∑

i=1

aiYi

]

=
n
∑

i=1

n
∑

j=1

aiajcov(Yi, Yj).
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For two random variables

E(a1Y1 + a2Y2) = a1E(Y1) + a2E(Y2),

var(a1Y1 + a2Y2) = a2
1var(Y1) + a2

2var(Y2) + 2a1a2cov(Y1, Y2).

Note: if Y1, . . . , Yn are all independent (or even just uncorrelated),

then

var

[

n
∑

i=1

aiYi

]

=
n
∑

i=1

a2
i var(Yi).

Also, if Y1, . . . , Yn are all independent, then

cov

(

n
∑

i=1

aiYi,
n
∑

i=1

ciYi

)

=
n
∑

i=1

aicivar(Yi).
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Important example: Suppose Y1, . . . , Yn are independent random

variables, each with mean µ and variance σ2. Define the sample

mean as Ȳ = 1
n

∑n
i=1 Yi. Then

E(Ȳ ) = E

(

1

n
Y1 + · · · + 1

n
Yn

)

=
1

n
E(Y1) + · · · + 1

n
E(Yn)

=
1

n
µ + · · · + 1

n
µ

= n

(

1

n
µ

)

= µ.
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var(Ȳ ) = var

(

1

n
Y1 + · · · + 1

n
Yn

)

=
1

n2
var(Y1) + · · · + 1

n2
var(Yn)

= (n)

(

1

n2
σ2

)

=
σ2

n
.

(C & B p. 212–214)
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The Central Limit Theorem takes this a step further. When

Y1, . . . , Yn are independent and identically distributed (i.e. a random

sample) from any distribution such that E(Yi) = µ and var(Y ) = σ2,

and n is reasonably large,

Ȳ
•∼ N

(

µ,
σ2

n

)

,

where
•∼ is read as “approximately distributed as”.

Note that E(Ȳ ) = µ and var(Ȳ ) = σ2

n as on the previous slide. The

CLT slaps normality onto Ȳ .

Formally, the CLT states

√
n(Ȳ − µ)

D→ N(0, σ2).

(C & B pp. 236–240)
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Section A.4 Gaussian & related distributions

Normal distribution (C & B pp. 102–106)

A random variable Y has a normal distribution with mean µ and

standard deviation σ, denoted Y ∼ N(µ, σ2), if it has the pdf

f(y) =
1√

2πσ2
exp

{

−1

2

(

y − µ

σ

)2
}

,

for −∞ < y < ∞. Here, µ ∈ R and σ > 0.

Note: If Y ∼ N(µ, σ2) then Z = Y −µ
σ ∼ N(0, 1) is said to have a

standard normal distribution.
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Note: If a and c are constants and Y ∼ N(µ, σ2), then

a + cY ∼ N(a + cµ, c2σ2).

Note: If Y1, . . . , Yn are independent normal such that Yi ∼ N(µi, σ
2
i )

and a1, . . . , an are constants, then

n
∑

i=1

aiYi = a1Y1 + · · · + anYn ∼ N

(

n
∑

i=1

aiµi,

n
∑

i=1

a2
i σ

2
i

)

.

Example: Suppose Y1, . . . , Yn are iid from N(µ, σ2). Then

Ȳ ∼ N

(

µ,
σ2

n

)

.

(C & B p. 215)
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Distributions related to normal sampling (C & B 5.3)

Chi-square distribution

def’n: If Z1, . . . , Zν
iid∼ N(0, 1), then X = Z2

1 + · · · + Z2
ν ∼ χ2

ν ,

“chi-square with ν degrees of freedom.” Note: E(X) = ν &

var(X) = 2ν. Plot of χ2
1, χ2

2, χ2
3, χ2

4 PDFs:

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5
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t distribution

def’n: If Z ∼ N(0, 1) independent of X2 ∼ χ2
ν then

T =
Z

√

X/ν
∼ tν ,

“t with ν degrees of freedom.”

Note that E(T ) = 0 for ν ≥ 2 and var(T ) = ν
ν−2 for ν ≥ 3.

t1, t2, t3, t4 PDFs:

-4 -2 2 4

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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F distribution

def’n: If X1 ∼ χ2
ν1

independent of X2 ∼ χ2
ν2

then

F =
X1/ν1

X2/ν2
∼ Fν1,ν2

,

“F with ν1 degrees of freedom in the numerator and ν2 degrees of

freedom in the denominator.”

Note: The square of a tν random variable is an F1,ν random

variable. Proof:

t2ν =

[

Z
√

χ2
ν/ν

]2

=
Z2

χ2
ν/ν

=
χ2

1/1

χ2
ν/ν

= F1,ν .

Note: E(F ) = ν2/(ν2 − 2) for ν2 > 2. Variance is function of ν1 and

ν2 and a bit more complicated.

Question: If F ∼ F (ν1, ν2), what is F−1 distributed as?
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F2,2, F5,5, F5,20, F5,200 PDFs:

1 2 3 4

0.2

0.4

0.6

0.8

1
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Section A.6 normal population inference

A model for a single sample

Suppose we have a random sample Y1, . . . , Yn of observations from a

normal distribution with unknown mean µ and unknown variance σ2.

We can model these data as

Yi = µ + εi, i = 1, . . . , n, where εi ∼ N(0, σ2).

Often we wish to obtain inference for the unknown population mean

µ, e.g. a confidence interval for µ or hypothesis test H0 : µ = µ0.
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Let s2 = 1
n−1

∑n
i=1(Yi − Ȳ )2 be the sample variance and s =

√
s2

be the sample standard deviation.

Fact: (n−1)s2

σ2 = 1
σ2

∑n
i=1(Yi − Ȳ )2 has a χ2

n−1 distribution (easy to

show using results from linear models).

Fact: Ȳ −µ
σ/

√
n

has a N(0, 1) distribution.

Fact: Ȳ is independent of s2. So then any function of Ȳ is

independent of any function of s2.

Therefore
[

Ȳ −µ
σ/

√
n

]

√

1

σ2 �

n

i=1
(Yi−Ȳ )2

n−1

=
Ȳ − µ

s/
√

n
∼ tn−1.

(C & B Theorem 5.3.1, p. 218)
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Let 0 < α < 1, typically α = 0.05. Let tn−1(1 − α/2) be such that

P (T ≤ tn−1) = 1 − α/2 for T ∼ tn−1.

tn−1 quantiles
t n

−1
 d

en
si

ty

− tn−1(1 − α 2) 0 tn−1(1 − α 2)

1 − α

α 2 α 2
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Under the model

Yi = µ + εi, i = 1, . . . , n, where εi ∼ N(0, σ2),

1 − α = P

(

−tn−1(1 − α/2) ≤ Ȳ − µ

s/
√

n
≤ tn−1(1 − α/2)

)

= P

(

− s√
n

tn−1(1 − α/2) ≤ Ȳ − µ ≤ s√
n

tn−1(1 − α/2)

)

= P

(

Ȳ − s√
n

tn−1(1 − α/2) ≤ µ ≤ Ȳ +
s√
n

tn−1(1 − α/2)

)
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So a (1 − α)100% random probability interval for µ is

Ȳ ± tn−1(1 − α/2)
s√
n

where tn−1(1 − α/2) is the (1 − α/2)th quantile of a tn−1 random

variable: i.e. the value such that P (T < tn−1(1 − α/2)) = 1 − α/2

where T ∼ tn−1.

This, of course, turns into a “confidence interval” after Ȳ = ȳ and s2

are observed, and no longer random.
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