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Gesell data

Let X be the age in in months a child speaks his/her first word
and let Y be the Gesell adaptive score, a measure of a child’s
aptitude (observed later on). Are X and Y related? How does the
child’s aptitude change with how long it takes them to speak?

Here’s the Gesell score yi and age at first word in months xi data,
i = 1, . . . , 21.

xi yi xi yi xi yi xi yi xi yi

15 95 26 71 10 83 9 91 15 102
20 87 18 93 11 100 8 104 20 94
7 113 9 96 10 83 11 84 11 102

10 100 12 105 42 57 17 121 11 86
10 100

In R, we compute r = −0.640, a moderately strong negative
relationship between age at first word spoken and Gesell score.

> age=c(15,26,10,9,15,20,18,11,8,20,7,9,10,11,11,10,12,42,17,11,10)

> Gesell=c(95,71,83,91,102,87,93,100,104,94,113,96,83,84,102,100,105,57,121,86,100)

> plot(age,Gesell)

> cor(age,Gesell)

[1] -0.64029
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Scatterplot of (x1, y1), . . . , (x21, y21)
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Random vectors

A random vector X =




X1

X2
...
Xk


 is made up of, say, k random

variables.

A random vector has a joint distribution, e.g. a density f (x), that
gives probabilities

P(X ∈ A) =

∫

A

f (x)dx.

Just as a random variable X has a mean E (X ) and variance
var(X ), a random vector also has a mean vector E (X) and a
covariance matrix cov(X).
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Mean vector & covariance matrix

Let X = (X1, . . . ,Xk) be a random vector with density
f (x1, . . . , xk). The mean of X is the vector of marginal means

E (X) = E







X1

X2

...
Xk





 =




E (X1)
E (X2)

...
E (Xk)


 . (5.38)

The covariance matrix of X is given by

cov(X) =




cov(X1,X1) cov(X1,X2) · · · cov(X1,Xk)
cov(X2,X1) cov(X2,X2) · · · cov(X2,Xk)

...
...

. . .
...

cov(Xk ,X1) cov(Xk ,X2) · · · cov(Xk ,Xk)


 . (5.42)
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Multivariate normal distribution

The normal distribution generalizes to multiple dimensions. We’ll
first look at two jointly distributed normal random variables, then
discuss three or more.

The bivariate normal density for (X1,X2) is given by f (x1, x2) =

1

2πσ1σ2

√

1 − ρ2
exp

{

−

1

2(1 − ρ2)

[

(

x1 − µ1

σ1

)2
− 2ρ

(

x1 − µ1

σ1

)(

x2 − µ2

σ2

)

+

(

x2 − µ2

σ2

)2
]}

.

There are 5 parameters: (µ1, µ2, σ1, σ2, ρ).

Besides 5.8, also see 2.11 pp.78–83.
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Bivariate normal distribution

This density jointly defines X1 and X2, which live in
R
2 = (−∞,∞)× (−∞,∞).

Marginally, X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) (p. 79).

The correlation between X1 and X2 is given by
corr(X1,X2) = ρ (p. 80).

For jointly normal random variables, if the correlation is zero
then they are independent. This is not true in general for
jointly defined random variables.

E (X) =

[
µ1

µ2

]
, cov(X) =

[
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

]
.

Next slide: µ1 = 0, 1; µ2 = 0, 2; σ2
1 = σ2

2 = 1;
ρ = 0, 0.9,−0.6.
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Bivariate normal PDF level curves
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Proof that X1 indpendent X2 when ρ = 0

When ρ = 0 the joint density for (X1,X2) simplifies to

f (x1, x2) =
1

2πσ1σ2
exp

{
−1

2

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2
]}

=

[
1√
2πσ1

e
−0.5

(

x1−µ1
σ1

)2] [
1√
2πσ2

e
−0.5

(

x2−µ21

σ2

)2]
.

Since these are each respectively functions of x1 and x2 only, and
the range of (X1,X2) factors into the produce of two sets, X1 and
X2 are independent and in fact X1 ∼ N(µ1, σ

2
1) and

X2 ∼ N(µ2, σ
2
2).
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Conditional distributions [X1|X2 = x2] and [X2|X1 = x1]
(pp. 80–81)

The conditional distribution of X1 given X2 = x2 is

[X1|X2 = x2] ∼ N

(
µ1 +

σ1
σ2

ρ(x2 − µ2), σ
2
1(1− ρ2)

)
.

Similarly,

[X2|X1 = x1] ∼ N

(
µ2 +

σ2
σ1

ρ(x1 − µ1), σ
2
2(1− ρ2)

)
.

This ties directly to linear regression:

To predict X2|X1 = x1, we have

E (X2|X1 = x1) =

[
µ2 −

σ2
σ1

ρµ1

]
+

[
σ2
σ1

ρ

]
x1 = β0 + β1x1.
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Bivariate normal distribution as data model

Here we assume
[

Xi1
Xi2

]

iid
∼ N2

([

µ1
µ2

]

,

[

σ11 σ12
σ21 σ22

])

,

or succinctly,

Xi
iid∼ N2(µ,Σ).

If the bivariate normal model is appropriate for paired outcomes, it
provides a convenient probability model with some nice properties.

The sample mean X̄ = 1
n

∑n
i=1Xi is the MLE of µ and the sample

covariance matrix S = 1
n−1

∑n
i=1(Xi − X̄)(Xi − X̄)′ is unbiased for

Σ.

It can be shown that

X̄ ∼ N2

(
µ,

1

n
Σ

)
.

The matrix (n − 1)S has a “Wishart” distribution (generalizes χ2).
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Sample mean vector & covariance matrix

Say n outcome pairs are to be recorded:
{(X11,X12), (X21,X22), . . . , (Xn1,Xn2)}. The i th pair is (Xi1,Xi2).
The sample mean vector is given elementwise by

X̄ =

[
X̄1

X̄2

]
=

[
1
n

∑n

i=1 Xi1
1
n

∑n

i=1 Xi2

]
,

and the sample covariance matrix is given elementwise by

S =

[ 1
n−1

∑n

i=1(Xi1 − X̄1)
2 1

n−1

∑n

i=1(Xi1 − X̄1)(Xi2 − X̄2)
1

n−1

∑n

i=1(Xi1 − X̄1)(Xi2 − X̄2)
1

n−1

∑n

i=1(Xi2 − X̄2)
2

]
.
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Estimation

The sample mean vector X̄ estimates µ =

[
µ1

µ2

]
and the sample

covariance matrix S estimates

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
=

[
σ11 σ12

σ21 σ22

]
.

We will place hats on parameter estimators based on the data. So

µ̂1 = X̄1, µ̂2 = X̄2, σ̂2
1 = s21 =

1

n − 1

n∑

i=1

(Xi1 − X̄1)
2,

σ̂2
2 = s22 =

1

n − 1

n∑

i=1

(Xi2 − X̄2)
2.

Also,

ĉov(X1,X2) =
1

n − 1

n∑

i=1

(Xi1 − X̄ )(Xi2 − X̄2).
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Correlation coefficient r

So a natural estimate of ρ is then

ρ̂ =
ĉov(X1,X2)

σ̂1σ̂2
=

1
n−1

∑n
i=1(Xi1 − X̄1)(Xi2 − X̄2)√

1
n−1

∑n
i=1(Xi1 − X̄1)2

√
1

n−1

∑n
i=1(Xi1 − X̄1)2

.

This is in fact the MLE estimate based on the bivariate normal
model. It is also a “plug-in” estimator based on the
method-of-moments too. It is commonly referred to as the Pearson
correlation coefficient. You can get it as, e.g., cor(age,Gesell)
in R.
This estimate of correlation can be unduly influenced by outliers in
the sample. An alternative measure of linear association is the
Spearman correlation based on ranks, discussed a few lectures ago.

> cor(age,Gesell)

[1] -0.64029

> cor(age,Gesell,method="spearman")

[1] -0.3166224
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Gesell data

Recall: X is age in months a child speaks his/her first word and let
Y is Gesell adaptive score, a measure of a child’s aptitude.
Question: how does the child’s aptitude change with how long it
takes them to speak? Here, n = 21.

In R we find X̄ =

[
14.38
93.67

]
. Also, S =

[
60.14 −67.78

−67.78 186.32

]
.

Assuming a bivariate model, we plug in the estimates and obtain
the estimated PDF for (X ,Y ):

f (x , y) = exp(−60.22+1.3006x−0.0134x2+0.9520y−0.0098xy−0.0043y2).

We can further find from Y
•∼ N(93.67, 186.32),

fY (y) = exp(−3.557− 0.00256(y − 93.67)2).
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3D plot of f (x , y) for (X ,Y ) estimated from data
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Gesell conditional distribution
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Density estimate with actual data
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Multivariate normal distribution

In general, a k-variate normal is defined through the mean and
covariance matrix:




X1

X2
...
Xk


 ∼ Nk







µ1

µ2
...
µk


 ,




σ11 σ12 · · · σ1k
σ21 σ22 · · · σ2k
...

...
. . .

...
σk1 σk2 · · · σkk





 .

Succinctly,
X ∼ Nk(µ,Σ).

Recall that if Z ∼ N(0, 1), then X = µ+ σZ ∼ N(µ, σ2). The
definition of the multivariate normal distribution just extends this
idea.
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Multivariate normal made from independent normals

Instead of one standard normal, we have a list of k independent
standard normals Z = (Z1, . . . ,Zk), and consider the same sort of
transformation in the multivariate case using matrices and vectors.

Let Z1, . . . ,Zk
iid∼ N(0, 1). The joint pdf of (Z1, . . . ,Zk) is given by

f (z1, . . . , zk) =
k∏

i=1

exp(−0.5z2i )/
√
2π.

Let

µ =




µ1

µ2
...
µk


 and Σ =




σ11 σ12 · · · σ1k
σ21 σ22 · · · σ2k
...

...
. . .

...
σk1 σk2 · · · σkk


 ,

where Σ is symmetric (i.e. Σ′ = Σ, which implies σij = σji for all
1 ≤ i , j ≤ k).
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Multivariate normal made from independent normals

Let Σ1/2 be any matrix such that Σ1/2
Σ

1/2 = Σ. Then
X = µ+Σ

1/2
Z is said to have a multivariate normal distribution

with mean vector µ and covariance matrix Σ, written

X ∼ Nk(µ,Σ).

Written in terms of matrices

X =




X1

X2
...
Xk


 =




µ1

µ2
...
µk


+




σ11 σ12 · · · σ1k
σ21 σ22 · · · σ2k
...

...
. . .

...
σk1 σk2 · · · σkk




1/2 


Z1

Z2
...
Zk


 .
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Joint PDF

Using some math, it can be shown that the pdf of the new vector
X = (X1, . . . ,Xk) is given by

f (x1, . . . , xk |µ,Σ) = |2πΣ|−1/2 exp{−0.5(x− µ)′Σ−1(x− µ)}.

In the one-dimensional case, this simplifies to our old friend

f (x1|µ, σ2) = (2πσ2)−1/2 exp{−0.5(x − µ)(σ2)−1(x − µ)},

the pdf of a N(µ, σ2) random variable X .

|A| is the determinant of the matrix A, and is a function of the
elements of A, but beyond this course.
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Properties of multivariate normal vectors

Let
X ∼ Nk(µ,Σ).

Then

1 For each Xi in X = (X1, . . . ,Xk), E (Xi ) = µi and
var(Xi ) = σii . That is, marginally, Xi ∼ N(µi , σii ).

2 For any r × k matrix M,

MX ∼ Nr (Mµ,MΣM
′).

3 For any two (Xi ,Xj) where 1 ≤ i < j ≤ k , cov(Xi ,Xj) = σij .
The off-diagonal elements of Σ give the covariance between
two elements of (X1, . . . ,Xk). Note then
ρ(Xi ,Xj) = σij/

√
σiiσjj .

4 For any k × 1 vector m = (m1, . . . ,mk) and Y ∼ Nk(µ,Σ),
m+ Y ∼ Nk(m+ µ,Σ).

23 / 25



Example

Let




X1
X2
X3





∼ N3









−2
5
0



 ,





2 1 1
1 3 −1
1 −1 4







 .

Define

M =

[

1 0 −1
1
3

1
3

1
3

]

and Y =

[

Y1
Y2

]

= MX =

[

1 0 −1
1
3

1
3

1
3

]





X1
X2
X3



 .

Then X2 ∼ N(5, 3), cov(X2,X3) = −1 and
[

1 0 −1
1
3

1
3

1
3

]





X1
X2
X3





∼

N2







[

1 0 −1
1
3

1
3

1
3

]





−2
5
0



 ,

[

1 0 −1
1
3

1
3

1
3

]





2 1 1
1 3 −1
1 −1 4











1 1
3

0 1
3

−1 1
3












,

or simplifying,
[

Y1
Y2

]

=

[

1 0 −1
1
3

1
3

1
3

]





X1
X2
X3





∼ N2

([

−2
1

]

,

[

4 0

0 11
9

])

.

Note that for the transformed vector Y = (Y1,Y2),
cov(Y1,Y2) = 0 and therefore Y1 and Y2 are uncorrelated, i.e.
ρ(Y1,Y2) = 0.
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Simple linear regression

For the linear model (e.g. simple linear regression or the
two-sample model) Y = Xβ + ǫ, the error vector is assumed (pp.
222–223)

ǫ ∼ Nn(0, In×nσ
2).

Then the least squares estimators have a multivariate normal
distribution

β̂ ∼ Np(β, (X
′
X)−1σ2).

p = 2 is the number of mean parameters. (The MSE has a gamma
distribution).

We’ll discuss this shortly!
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