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Course information

Logistics: Tuesday/Thursday 11:40am to 12:55pm in
LeConte College 201A.

Instructor: Tim Hanson, Leconte 219C.

Office hours: Tuesday/Thursday 10-11:00am and by
appointment.

Required text: Applied Linear Statistical Models (5th
Edition), by Kutner, Nachtsheim, Neter, and Li.

Online notes at
http://www.stat.sc.edu/∼hansont/stat704/stat704.html

Grading: homework 50%, two exams 25% each.

Stat 704 has a co-requisite of Stat 712 (Casella & Berger
level mathematical statistics). You need to be taking this, or
have taken this already.
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A.3 Random Variables

def’n : A random variable is defined as a function that maps
an outcome from some random phenomenon to a real number.

More formally, a random variable is a map or function from
the sample space of an experiment, S, to some subset of
the real numbers R ⊂ R.

Restated: A random variable measures the result of a
random phenomenon.

Example 1 : The height Y of a randomly selected University of
South Carolina statistics graduate student.
Example 2 : The number of car accidents Y in a month at the
intersection of Assembly and Gervais.
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cdf, pdf, pmf

Every random variable has a cumulative distribution
function (cdf) associated with it:

F (y) = P(Y ≤ y).

Discrete random variables have a probability mass function
(pmf)

f (y) = P(Y = y) = F (y)− F (y−) = F (y)− lim
x→y−

F (x). (A.11)

Continuous random variables have a probability density
function (pdf) such that for a < b

P(a ≤ Y ≤ b) =
∫ b

a
f (y)dy .

For continuous random variables, f (y) = F ′(y).
Question : Are the two examples on the previous slide
continuous or discrete?
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A.3 Expected value

The expected value , or mean of a random variable is, in
general, defined as

E(Y ) =

∫ ∞

−∞
y dF (y).

For discrete random variables this is

E(Y ) =
∑

y :f (y)>0

y f (y). (A.12)

For continuous random variables this is

E(Y ) =

∫ ∞

−∞
y f (y)dy . (A.14)
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E(·) is linear

Note : If a and c are constants,

E(a + cY ) = a + cE(Y ). (A.13)

In particular,

E(a) = a

E(cY ) = cE(Y )

E(Y + a) = E(Y ) + a
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A.3 Variance

The variance of a random variable measures the “spread” of its
probability distribution. It is the expected squared deviation
about the mean:

var(Y ) = E{[Y − E(Y )]2} (A.15)

Equivalently,
var(Y ) = E(Y 2)− [E(Y )]2 (A.15a)

Note : If a and c are constants,

var(a + cY ) = c2var(Y ) (A.16)

In particular,
var(a) = 0

var(cY ) = c2var(Y )

var(Y + a) = var(Y )

Note : The standard deviation of Y is sd(Y ) =
√

var(Y ).
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Example

Suppose Y is the high temperature in Celsius of a September
day in Seattle. Say E(Y ) = 20 and var(Y ) = 10. Let W be the
high temperature in Fahrenheit. Then

E(W ) = E
(

9

5
Y + 32

)

=
9

5
E(Y ) + 32 =

9

5
20 + 32 = 68 degrees.

var(W ) = var
(

9

5
Y + 32

)

=

(

9

5

)2

var(Y ) = 3.24(10) = 32.4 degrees2.

sd(Y ) =
√

var(Y ) =
√

32.4 = 5.7 degrees.
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A.3 Covariance

For two random variables Y and Z , the covariance of Y and Z
is

cov(Y ,Z ) = E{[Y − E(Y )][Z − E(Z )]}.
Note

cov(Y ,Z ) = E(YZ )− E(Y )E(Z ) (A.21)

If Y and Z have positive covariance, lower values of Y tend to
correspond to lower values of Z (and large values of Y with
large values of Z ).
Example : X is work experience in years and Y is salary in
Euro.
If Y and Z have negative covariance, lower values of Y tend to
correspond to higher values of Z and vice-versa.
Example : X is the weight of a car in tons and Y is miles per
gallon.
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Covariance is linear

If a1, c1, a2, c2 are constants,

cov(a1 + c1Y , a2 + c2Z ) = c1c2cov(Y ,Z ) (A.22)

Note : by definition cov(Y ,Y ) = var(Y ).

The correlation coefficient between Y and Z is the
covariance scaled to be between −1 and 1:

corr(Y ,Z ) =
cov(Y ,Z )

√

var(Y )var(Z )
(A.25a)

If corr(Y ,Z ) = 0 then Y and Z are uncorrelated .
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Independent random variables

Informally, two random variables Y and Z are independent
if knowing the value of one random variable does not affect
the probability distribution of the other random variable.

Note : If Y and Z are independent, then Y and Z are
uncorrelated, corr(Y ,Z ) = 0.

However, corr(Y ,Z ) = 0 does not imply independence in
general.

If Y and Z have a bivariate normal distribution then
cov(Y ,Z ) = 0 ⇔ Y , Z independent.

Question : what is the formal definition of independence
for (Y ,Z )?
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Linear combinations of random variables

Suppose Y1,Y2, . . . ,Yn are random variables and a1, a2, . . . , an

are constants. Then

E

[

n
∑

i=1

aiYi

]

=
n
∑

i=1

aiE(Yi). (A.29a)

That is,

E [a1Y1 + a2Y2 + · · ·+ anYn] = a1E(Y1)+a2E(Y2)+· · ·+anE(Yn).

Also,

var

[

n
∑

i=1

aiYi

]

=
n
∑

i=1

n
∑

j=1

aiajcov(Yi ,Yj) (A.29b)

12 / 30



For two random variables (A.30a & b)

E(a1Y1 + a2Y2) = a1E(Y1) + a2E(Y2),

var(a1Y1 + a2Y2) = a2
1var(Y1) + a2

2var(Y2) + 2a1a2cov(Y1,Y2).

Note : if Y1, . . . ,Yn are all independent (or even just
uncorrelated), then

var

[

n
∑

i=1

aiYi

]

=

n
∑

i=1

a2
i var(Yi). (A.31)

Also, if Y1, . . . ,Yn are all independent, then

cov

(

n
∑

i=1

aiYi ,
n
∑

i=1

ciYi

)

=
n
∑

i=1

aicivar(Yi). (A.32)
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Important example
Suppose Y1, . . . ,Yn are independent random variables, each
with mean µ and variance σ2. Define the sample mean as
Ȳ = 1

n

∑n
i=1 Yi . Then

E(Ȳ ) = E
(

1

n
Y1 + · · ·+

1

n
Yn

)

=
1

n
E(Y1) + · · ·+

1

n
E(Yn)

=
1

n
µ+ · · ·+

1

n
µ

= n
(

1

n
µ

)

= µ.

var(Ȳ ) = var
(

1

n
Y1 + · · ·+

1

n
Yn

)

=
1

n2
var(Y1) + · · ·+

1

n2
var(Yn)

= (n)
(

1

n2
σ2

)

=
σ2

n
.

(Casella & Berger pp. 212–214)
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A.3 Central Limit Theorem

The Central Limit Theorem takes this a step further. When
Y1, . . . ,Yn are independent and identically distributed (i.e. a
random sample) from any distribution such that E(Yi) = µ and
var(Y ) = σ2, and n is reasonably large,

Ȳ •∼ N
(

µ,
σ2

n

)

,

where •∼ is read as “approximately distributed as”.
Note that E(Ȳ ) = µ and var(Ȳ ) = σ2

n as on the previous slide.
The CLT slaps normality onto Ȳ .
Formally, the CLT states

√
n(Ȳ − µ)

D→ N(0, σ2).

(Casella & Berger pp. 236–240)
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Section A.4 Gaussian & related distributions

Normal distribution (Casella & Berger pp. 102–106)

A random variable Y has a normal distribution with mean
µ and standard deviation σ, denoted Y ∼ N(µ, σ2), if it has
the pdf

f (y) =
1√

2πσ2
exp

{

−1
2

(

y − µ

σ

)2
}

,

for −∞ < y < ∞. Here, µ ∈ R and σ > 0.

Note : If Y ∼ N(µ, σ2) then Z = Y−µ
σ ∼ N(0, 1) is said to

have a standard normal distribution.
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Sums of independent normals

Note : If a and c are constants and Y ∼ N(µ, σ2), then

a + cY ∼ N(a + cµ, c2σ2).

Note : If Y1, . . . ,Yn are independent normal such that
Yi ∼ N(µi , σ

2
i ) and a1, . . . , an are constants, then

n
∑

i=1

aiYi = a1Y1 + · · ·+ anYn ∼ N

(

n
∑

i=1

aiµi ,
n
∑

i=1

a2
i σ

2
i

)

.

Example : Suppose Y1, . . . ,Yn are iid from N(µ, σ2). Then

Ȳ ∼ N
(

µ,
σ2

n

)

.

(Casella & Berger p. 215)
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A.4 χ2 distribution

def’n : If Z1, . . . ,Zν
iid∼ N(0, 1), then X = Z 2

1 + · · ·+ Z 2
ν ∼ χ2

ν ,
“chi-square with ν degrees of freedom.” Note: E(X ) = ν &
var(X ) = 2ν. Plot of χ2

1, χ2
2, χ2

3, χ2
4 PDFs:

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5
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A.4 t distribution

def’n : If Z ∼ N(0, 1) independent of X ∼ χ2
ν then

T =
Z

√

X/ν
∼ tν ,

“t with ν degrees of freedom.”
Note that E(T ) = 0 for ν ≥ 2 and var(T ) = ν

ν−2 for ν ≥ 3.
t1, t2, t3, t4 PDFs:

-4 -2 2 4

0.05

0.1

0.15

0.2

0.25
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A.4 F distribution

def’n : If X1 ∼ χ2
ν1

independent of X2 ∼ χ2
ν2

then

F =
X1/ν1

X2/ν2
∼ Fν1,ν2 ,

“F with ν1 degrees of freedom in the numerator and ν2 degrees
of freedom in the denominator.”
Note : The square of a tν random variable is an F1,ν random
variable. Proof:

t2
ν =

[

Z
√

χ2
ν/ν

]2

=
Z 2

χ2
ν/ν

=
χ2

1/1
χ2
ν/ν

= F1,ν .

Note : E(F ) = ν2/(ν2 − 2) for ν2 > 2. Variance is function of ν1

and ν2 and a bit more complicated.
Question : If F ∼ F (ν1, ν2), what is F−1 distributed as?
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Relate plots to E(F ) = ν2/(ν2 − 2)

F2,2, F5,5, F5,20, F5,200 PDFs:

1 2 3 4
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0.4

0.6

0.8

1
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A.6 normal population inference

A model for a single sample

Suppose we have a random sample Y1, . . . ,Yn of
observations from a normal distribution with unknown
mean µ and unknown variance σ2.

We can model these data as

Yi = µ+ ǫi , i = 1, . . . , n, where ǫi ∼ N(0, σ2).

Often we wish to obtain inference for the unknown
population mean µ, e.g. a confidence interval for µ or
hypothesis test H0 : µ = µ0.
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Standardize Ȳ to get t random variable

Let s2 = 1
n−1

∑n
i=1(Yi − Ȳ )2 be the sample variance and

s =
√

s2 be the sample standard deviation .

Fact : (n−1)s2

σ2 = 1
σ2

∑n
i=1(Yi − Ȳ )2 has a χ2

n−1 distribution
(easy to show using results from linear models).

Fact : Ȳ−µ
σ/

√
n

has a N(0, 1) distribution.

Fact : Ȳ is independent of s2. So then any function of Ȳ is
independent of any function of s2.

Therefore
[

Ȳ−µ
σ/

√
n

]

√

1
σ

2

∑n
i=1(Yi−Ȳ )2

n−1

=
Ȳ − µ

s/
√

n
∼ tn−1.

(Casella & Berger Theorem 5.3.1, p. 218)
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Building a confidence interval

Let 0 < α < 1, typically α = 0.05. Let tn−1(1 − α/2) be such
that P(T ≤ tn−1) = 1 − α/2 for T ∼ tn−1.

tn−1 quantiles

t n
−1

 d
en

si
ty

− tn−1(1 − α 2) 0 tn−1(1 − α 2)

1 − α

α 2 α 2
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Confidence interval for µ

Under the model

Yi = µ+ ǫi , i = 1, . . . , n, where ǫi ∼ N(0, σ2),

1 − α = P
(

−tn−1(1 − α/2) ≤ Ȳ − µ

s/
√

n
≤ tn−1(1 − α/2)

)

= P
(

− s√
n

tn−1(1 − α/2) ≤ Ȳ − µ ≤ s√
n

tn−1(1 − α/2)
)

= P
(

Ȳ − s√
n

tn−1(1 − α/2) ≤ µ ≤ Ȳ +
s√
n

tn−1(1 − α/2)
)
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Confidence interval for µ

So a (1 − α)100% random probability interval for µ is

Ȳ ± tn−1(1 − α/2)
s√
n

where tn−1(1 − α/2) is the (1 − α/2)th quantile of a tn−1

random variable: i.e. the value such that
P(T < tn−1(1 − α/2)) = 1 − α/2 where T ∼ tn−1.

This, of course, turns into a “confidence interval” after Ȳ = ȳ
and s2 are observed, and no longer random.
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Standardizing with Ȳ instead of µ

Note : If Y1, . . . ,Yn
iid∼ N(µ, σ2), then:

n
∑

i=1

(

Yi − µ

σ

)2

∼ χ2
n,

and
n
∑

i=1

(

Yi − Ȳ
σ

)2

∼ χ2
n−1.

First one is straightforward from properties of normals and
definition of χ2

ν ; second one is intuitive but not straightforward to
show until linear models...
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Confidence interval example

Say we collect n = 30 summer daily high temperatures and
obtain ȳ = 77.667 and s = 8.872. To obtain a 90% CI, we
need, where α = 0.10

t29(1 − α/2) = t29(0.95) = 1.699 (Table B.2),

yielding

77.667 ± (1.699)
(

8.872√
30

)

⇒ (74.91, 80.42).

Interpretation : With 90% confidence, the true mean high
temperature is between 74.91 and 80.42 degrees.
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SAS example: Page 645

n = 63 faculty voluntarily attended a summer workshop on
case teaching methods (out of 110 faculty total).

At the end of the following academic year their teaching
was evaluated on a 7-point scale (1=really bad to
7=outstanding).

proc ttest in SAS gets us a confidence interval for the
mean.
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SAS code

********************************
* Example 2, p. 645 (Chapter 15)

********************************;
data teaching;
input rating attend$ @@;
if attend=’Attended’; * only keep those who attended;
datalines;
4.8 Attended 6.4 Attended 6.3 Attended 6.0 Attended 5.4 Attended
5.8 Attended 6.1 Attended 6.3 Attended 5.0 Attended 6.2 Attended
5.6 Attended 5.0 Attended 6.4 Attended 5.8 Attended 5.5 Attended
6.1 Attended 6.0 Attended 6.0 Attended 5.4 Attended 5.8 Attended
6.5 Attended 6.0 Attended 6.1 Attended 4.7 Attended 5.6 Attended
6.1 Attended 5.8 Attended 4.8 Attended 5.9 Attended 5.4 Attended
5.3 Attended 6.0 Attended 5.6 Attended 6.3 Attended 5.2 Attended
6.0 Attended 6.4 Attended 5.8 Attended 4.9 Attended 4.1 Attended
6.0 Attended 6.4 Attended 5.9 Attended 6.6 Attended 6.0 Attended
4.4 Attended 5.9 Attended 6.5 Attended 4.9 Attended 5.4 Attended
5.8 Attended 5.6 Attended 6.2 Attended 6.3 Attended 5.8 Attended
5.9 Attended 6.5 Attended 5.4 Attended 5.9 Attended 6.1 Attended
6.6 Attended 4.7 Attended 5.5 Attended 5.0 NotAttend 5.5 NotAttend
5.7 NotAttend 4.3 NotAttend 4.9 NotAttend 3.4 NotAttend 5.1 NotAttend
4.8 NotAttend 5.0 NotAttend 5.5 NotAttend 5.7 NotAttend 5.0 NotAttend
5.2 NotAttend 4.2 NotAttend 5.7 NotAttend 5.9 NotAttend 5.8 NotAttend
4.2 NotAttend 5.7 NotAttend 4.8 NotAttend 4.6 NotAttend 5.0 NotAttend
4.9 NotAttend 6.3 NotAttend 5.6 NotAttend 5.7 NotAttend 5.1 NotAttend
5.8 NotAttend 3.8 NotAttend 5.0 NotAttend 6.1 NotAttend 4.4 NotAttend
3.9 NotAttend 6.3 NotAttend 6.3 NotAttend 4.8 NotAttend 6.1 NotAttend
5.3 NotAttend 5.1 NotAttend 5.5 NotAttend 5.9 NotAttend 5.5 NotAttend
6.0 NotAttend 5.4 NotAttend 5.9 NotAttend 5.5 NotAttend 6.0 NotAttend
;
proc ttest data=teaching;
var rating;
run;
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