Chapter 6 Multiple Regression

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

Let's construct a CI for the mean response corresponding to a set of values

$$\mathbf{x}_h = \begin{bmatrix} 1 \\ x_{h1} \\ x_{h2} \\ \vdots \\ x_{hk} \end{bmatrix}.$$

We want to make inferences about

$$E(Y_h) = \mathbf{x}'_h \boldsymbol{\beta} = \beta_0 + \beta_1 x_{h1} + \cdots + \beta_k x_{hk}.$$

Some math...

- A point estimate is $\hat{Y}_h = \widehat{E(Y_h)} = \mathbf{x}'_h \mathbf{b}$.
- Then $E(\hat{Y}_h) = E(\mathbf{x}'_h \mathbf{b}) = \mathbf{x}'_h E(\mathbf{b}) = \mathbf{x}'_h \boldsymbol{\beta}.$
- Also $\operatorname{var}(\hat{Y}_h) = \operatorname{cov}(\mathbf{x}'_h \mathbf{b}) = \mathbf{x}'_h \operatorname{cov}(\mathbf{b}) \mathbf{x}_h = \sigma^2 \mathbf{x}'_h (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_h.$

So...

• A
$$100(1-\alpha)$$
% CI for $E(Y_h)$ is

$$\hat{Y}_h \pm t_{n-p} (1-lpha/2) \sqrt{MSE \mathbf{x}'_h (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_h},$$

• A $100(1 - \alpha)$ % prediction interval for a new response $Y_h = \mathbf{x}'_h \boldsymbol{\beta} + \epsilon_h$ is

$$\hat{Y}_h \pm t_{n-p} (1 - \alpha/2) \sqrt{MSE[1 + \mathbf{x}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_h]}$$

Dwayne Studios

Say we want to estimate mean sales in cities with $x_1 = 65.4$ thousand people 16 or younger and per capita disposable income of $x_2 = 17.6$ thousand dollars. Now say we want a prediction interval for a *new city* with these covariates. We can add these covariates to the data step, with a missing value "." for sales, and ask SAS for the CI and PI.

data studio: input people16 income sales @@: label people16='16 & under (1000s)' income ='Per cap. disp. income (\$1000)' sales ='Sales (\$1000\$)'; datalines: 68.5 16.7 174.4 45.2 16.8 164.4 91.3 18.2 244.2 47.8 16.3 154.6 46.9 17.3 181.6 66.1 18.2 207.5 49.5 15.9 152.8 52.0 17.2 163.2 48.9 16.6 145.4 38.4 16.0 137.2 87.9 18.3 241.9 72.8 17.1 191.1 88.4 17.4 232.0 42.9 15.8 145.3 52.5 17.8 161.1 85.7 18.4 209.7 41.3 16.5 146.4 51.7 16.3 144.0 89.6 18.1 232.6 82.7 19.1 224.1 52.3 16.0 166.5 65.4 17.6 proc reg data=studio; model sales=people16 income / clm cli alpha=0.05: Output Statistics Dependent Predicted Std Error 95% CL Mean Obs Variable Value Mean Predict 95% CL Predict Residual 174.4000 187.1841 3.8409 179.1146 195.2536 162,6910 211,6772 -12.78411 21 166,5000 157,0644 4.0792 148.4944 165.6344 132,4018 181,7270 9.4356 ...et cetera... 22 191.1039 2.7668 185.2911 196.9168 167.2589 214.9490

The general linear model assumes the following:

- A linear relationship between E(Y) and associated predictors x₁,..., x_k.
- Interiors have constant variance.
- **③** The errors are normally distributed.
- The errors are independent.

We estimate the unknown $\epsilon_1, \ldots, \epsilon_n$ with the residuals e_1, \ldots, e_n . Assumptions can be checked informally using plots and formally using tests.

Note: We can't check $E(\epsilon_i) = 0$ because $e_1 + \cdots + e_n = 0$, i.e. $\bar{e} = 0$, by construction.

Assumption 1: Linear mean

- Scatterplots of {(x_{ij}, Y_i)}ⁿ_{i=1} for each predictor j = 1,..., k. Look for "nonlinear" patterns. These are marginal relationships, and do not get at the simultaneous relationship among variables.
- Look at residuals versus each predictor {(x_{ij}, e_i)}ⁿ_{i=1}, and (or?) residuals versus fitted values {(Ŷ_i, e_i)}ⁿ_{i=1}.
- Book suggests looking at residuals versus pairwise interactions, e.g. e_i versus x_{i1}x_{i2}.
- Look for non-random (especially curved) pattern in the residual plots, indicating violation of linear mean.
- **Remedies**: (i) choose different functional form of model, (ii) transformation of one or more predictor variables.
- Formal "lack of fit" test is available (Section 3.7, also p. 235), but requires replicate observations at each distinct predictor value.

Scatterplot matrix

Standard diagnostics from ODS GRAPHICS

Assumption 2: Constant variance

- Often the most worrisome assumption.
- Violation indicated by "megaphone shape" in residual plot:

• Easy remedy: transform the response, e.g. $Y^* = \log(Y)$ or $Y^* = \sqrt{Y}$.

• Advanced method: weighted least squares (Chapter 11).

- Breusch-Pagan test (pp. 118–119): tests whether the log error variance increases or decreases linearly with the predictor(s). Where $Y_i \sim N(\mathbf{x}'_i\beta, \sigma_i^2)$, set $\log \sigma_i^2 = \alpha_0 + \alpha_1 x_{i1} + \cdots + \alpha_k x_{ik}$ and test $H_0: \alpha_1 = \cdots = \alpha_k = 0$, i.e. $\log \sigma_i^2 = \alpha_0$. Requires large samples & assumes normal errors.
- Brown-Forsythe test (pp. 116–117): Robust to non-normal errors. Requires user to break data into groups and test for constancy error variance across groups (not natural for continuous data).
- Graphical methods have advantage of checking for *general violations*, not just violation of a specific type.

Breusch Pagan test in SAS

PROC MODEL carries out a modified version of the test where $\sigma_i = \sigma + \alpha_1 x_{i1} + \cdots + \alpha_{ik} x_{ik}$ and $H_0 : \alpha_1 = \cdots = \alpha_k = 0$. If H_0 is true then $\sigma_i = \sigma$ for $i = 1, \dots, n$.

```
proc model data=studio;
parms beta0 beta1 beta2;
sales=beta0+people16*beta1+income*beta2;
fit sales / breusch=(1 income sales);
```

Nonlinear OLS Summary of Residual Errors

Equation sales	DF Model 3	DF Error 18	SSE 2180.9	MSE 121.2	Root MSE 11.0074	R-Square 0.9167	Ad e R-Se 7 0.907	j q Label 5 Sales	(\$1000\$)
	Nonl:	inear OLS	Parameter E	Istimates					
			Approx		Appro	ĸ			
Parameter	E	stimate	Std Err	t Value	Pr > t	I			
beta0	-6	68.8571	60.0170	-1.15	0.266	3			
beta1		1.45456	0.2118	6.87	<.000	1			
beta2		9.3655	4.0640	2.30	0.033	3			
			Heter	coscedastic	ity Test				
Equation	Te	est	Sta	tistic	DF Pr>	ChiSq	Variables		
sales	B	reusch-Pa	gan	2.10	2 0	0.3503	1, income,	sales	

With p = 0.35 we do not reject H_0 : $\sigma_i = \sigma$ at $\alpha = 0.05$, no evidence of non-constant variance.

Caution: your estimate of ϵ , given by $\mathbf{e} = \mathbf{Y} - \mathbf{X}\mathbf{b}$, is only as good as the model for your mean! Changing the mean can drastically change the residuals \mathbf{e} and any residual plots or formal tests based on them. Diagnostics include...

- Q-Q plot of e_1, \ldots, e_n .
- Formal test for normality: Shapiro-Wilk (Section 3.5), essentially based on the correlation coefficient *r* for expected versus observed in normal Q-Q plot.
- **Remedy**: transformation of Y and or any of $x_1, ..., x_k$, nonparametric methods (e.g. additive models), robust regression (least sum of absolute distances), median regression.

Standard diagnostics from ODS GRAPHICS

Test for normal residuals in Portrait data

```
proc reg data=studio;
model sales=people16 income;
output out=temp r=residual;
proc univariate data=temp normal; var residual; run;
```

Tests for Normality

Test	Sta	tistic	р V	alue
Shapiro-Wilk	W	0.954073	Pr < W	0.4056
Kolmogorov-Smirnov	D	0.147126	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.066901	Pr > W-S	q >0.2500
Anderson-Darling	A-Sq	0.432299	Pr > A-S	q >0.2500

We accept (or "do not reject" if you are a purist) $H_0: e_1, \ldots, e_n$ are normal.

The Anderson-Darling tests looks primarily for evidence of non-normal data in the tails of a distribution; the Shapiro-Wilk emphasizes lack of symmetry in the distribution; i.e. less emphasis placed on the tails.

- With large sample sizes, the normality assumption is not critical *unless you are predicting new observations*.
- The formal test will not tell you the *type* of departure from normality (e.g. bimodal, skew, heavy or light tails, et cetera).
- Q-Q plots help answer these questions (*if* the mean is specified correctly).

Assumption 4: Independence

- Chapter 12 discusses time-series methods. Handles correlated errors over time (or space). Can also include time as a predictor.
- If willing to assume some *structure* on the errors, e.g. AR(1), then can do a formal test (Chapter 12, e.g. Durbin-Watson test pp. 484–488).
- Christensen, R. and Bedrick, E. (1997). Testing the independence assumption in linear models. JASA, 92, 1006–1016. Uses "near-replicates" instead of replicates. (Replicates needed for standard LOF test).
- In general, need to test H₀: cov(ε) = diag(σ₁²,...,σ_n²) (diagonal), or even stronger H₀: cov(ε) = σ²I_n (spherical – constant variance).

Problems 6.15, 6.16, 6.17

- Y = patient satisfaction (100 point scale)
- $x_1 = age in years$
- $x_2 = \text{illness severity (an index)}$
- $x_3 = \text{anxiety level (an index)}$

Let's analyze these data with SAS...

6.15(b) scatterplot matrix

SAS code

```
data sat;
input sat age sev anx;
 age_sev=age*sev; age_anx=age*anx; sev_anx=sev*anx; * interactions;
label sat='Satisfaction (100)'
      age='Age (years)'
      sev='Illness severity (index)'
      anx='Anxiety (index)';
datalines;
 48
      50 51 2.3
 57 36 46 2.3
 66 40 48 2.2
   ...et cetera...
 68
     45 51 2.2
 59 37 53 2.1
 92 28 46 1.8
;
proc sgscatter data=sat; matrix sat age sev anx; run;
options nocenter;
proc reg data=sat;
model sat=age sev anx;
output out=resid r=residual; run;
proc sgscatter data=resid;
 plot residual*age_sev residual*age_anx residual*sev_anx; run;
```

Analysis of Variance

			Sum of	Mean			
Source		DF	Squares	Square	F Value Pr	> F	
Model		3	9120.46367	3040.15456	30.05 <.	0001	
Error		42	4248.84068	101.16287			
Corrected	Total	45	13369				
Root MSE		10.05798	R-Square	0.6822			
Dependent	Mean	61.56522	Adj R-Sq	0.6595			
Coeff Var		16.33711					
			Parame	eter Estimates			
				Parameter	Standard		
Variable	Label		DF	Estimate	Error	t Value	Pr > t
Intercept	Interc	ept	1	158.49125	18.12589	8.74	<.0001
age	Age (y	ears)	1	-1.14161	0.21480	-5.31	<.0001
sev	Illnes	s severity	(index) 1	-0.44200	0.49197	-0.90	0.3741
anx	Anxiet	y (index)	1	-13.47016	7.09966	-1.90	0.0647

Diagnostics

Residuals vs. predictors

Residuals vs. interactions

Some answers to textbook problems...

- 6.15(c) sat = 158.5 1.14age 0.442sev 13.5anx.
 b₂ = -0.442; for every unit increase in the illness severity index, mean satisfaction is reduced by 0.442 units.
- 6.15(e) There is a slight increase in variability for e_i vs. Ŷ_i, but overall it looks okay. The normal probability plot of the residuals looks fine (relatively straight). The plots of the residuals vs. each predictor and each two-way interaction all look appropriately "random."
- 6.15(g) The Breusch-Pagan test gives p = 0.46, no evidence of non-constant variance.

```
proc model data=sat;
parms beta0 beta1 beta2 beta3;
sat=beta0+age*beta1+sev*beta2+anx*beta3;
fit sat / breusch=(1 age sev anx);
```

		Heteroscedast	cicity	Test		
Equation	Test	Statistic	DF	Pr > ChiSq	Variables	
sat	Breusch-Pagan	2.56	3	0.4648	1, age, sev, an	ıx

Some answers to textbook problems...

- 6.16(a) We reject H₀: β₁ = β₂ = β₃ = 0 at the 1% level (p < 0.0001 from the ANOVA table). One or more regressors are important in the model.
- 6.16(c) $R^2 = 0.68$ so 68% of the variability is explained by the regression surface.
- 6.17(a,b) | added " . 35 45 2.2" to the data and changed the model statement to model sat=age sev anx / clm cli alpha=0.1; obtaining

	Dependent	Predicted	Std Error				
Obs	Variable	Value	Mean Predict	90% CL	Mean	90% CL	Predict
1		69.0103	2.6646	64.5285	73.4920	51.5097	86.5109

We are 90% confident that the true mean satisfaction is between 64.5 and 73.5 units for 35 year-olds with severity 45 and anxiety 2.2. We would predict a new patient from this population to have a satisfaction in the range 51.5 to 86.5.