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6.7 CI for mean response and PI for new response

Let’s construct a CI for the mean response corresponding to a set
of values

xh =


1
xh1
xh2

...
xhk

 .
We want to make inferences about

E (Yh) = x′hβ = β0 + β1xh1 + · · ·+ βkxhk .
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Some math...

A point estimate is Ŷh = Ê (Yh) = x′hb.

Then E (Ŷh) = E (x′hb) = x′hE (b) = x′hβ.

Also var(Ŷh) = cov(x′hb) = x′hcov(b)xh = σ2x′h(X′X)−1xh.

So...

A 100(1− α)% CI for E (Yh) is

Ŷh ± tn−p(1− α/2)
√
MSE x′h(X′X)−1xh,

A 100(1− α)% prediction interval for a new response
Yh = x′hβ + εh is

Ŷh ± tn−p(1− α/2)
√
MSE [1 + x′h(X′X)−1xh],

3 / 25



Dwayne Studios

Say we want to estimate mean sales in cities with x1 = 65.4
thousand people 16 or younger and per capita disposable income of
x2 = 17.6 thousand dollars. Now say we want a prediction interval
for a new city with these covariates. We can add these covariates
to the data step, with a missing value “.” for sales, and ask SAS
for the CI and PI.
data studio;

input people16 income sales @@;

label people16=’16 & under (1000s)’ income =’Per cap. disp. income ($1000)’

sales =’Sales ($1000$)’;

datalines;

68.5 16.7 174.4 45.2 16.8 164.4 91.3 18.2 244.2 47.8 16.3 154.6

46.9 17.3 181.6 66.1 18.2 207.5 49.5 15.9 152.8 52.0 17.2 163.2

48.9 16.6 145.4 38.4 16.0 137.2 87.9 18.3 241.9 72.8 17.1 191.1

88.4 17.4 232.0 42.9 15.8 145.3 52.5 17.8 161.1 85.7 18.4 209.7

41.3 16.5 146.4 51.7 16.3 144.0 89.6 18.1 232.6 82.7 19.1 224.1

52.3 16.0 166.5 65.4 17.6 .

;

proc reg data=studio;

model sales=people16 income / clm cli alpha=0.05;

Output Statistics

Dependent Predicted Std Error

Obs Variable Value Mean Predict 95% CL Mean 95% CL Predict Residual

1 174.4000 187.1841 3.8409 179.1146 195.2536 162.6910 211.6772 -12.7841

21 166.5000 157.0644 4.0792 148.4944 165.6344 132.4018 181.7270 9.4356

...et cetera...

22 . 191.1039 2.7668 185.2911 196.9168 167.2589 214.9490 .
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6.8 Checking model assumptions

The general linear model assumes the following:

1 A linear relationship between E (Y ) and associated predictors
x1, . . . , xk .

2 The errors have constant variance.

3 The errors are normally distributed.

4 The errors are independent.

We estimate the unknown ε1, . . . , εn with the residuals e1, . . . , en.
Assumptions can be checked informally using plots and formally
using tests.
Note: We can’t check E (εi ) = 0 because e1 + · · ·+ en = 0, i.e.
ē = 0, by construction.
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Assumption 1: Linear mean

Scatterplots of {(xij ,Yi )}ni=1 for each predictor j = 1, . . . , k .
Look for “nonlinear” patterns. These are marginal
relationships, and do not get at the simultaneous relationship
among variables.

Look at residuals versus each predictor {(xij , ei )}ni=1, and

(or?) residuals versus fitted values {(Ŷi , ei )}ni=1.

Book suggests looking at residuals versus pairwise
interactions, e.g. ei versus xi1xi2.

Look for non-random (especially curved) pattern in the
residual plots, indicating violation of linear mean.

Remedies: (i) choose different functional form of model, (ii)
transformation of one or more predictor variables.

Formal “lack of fit” test is available (Section 3.7, also p.
235), but requires replicate observations at each distinct
predictor value.
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Scatterplot matrix

proc sgscatter; matrix people16 income sales / diagonal=(histogram kernel); run;
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Standard diagnostics from ODS GRAPHICS
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Assumption 2: Constant variance

Often the most worrisome assumption.

Violation indicated by “megaphone shape” in residual plot:
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Ŷi
e i

Easy remedy: transform the response, e.g. Y ∗ = log(Y ) or
Y ∗ =

√
Y .

Advanced method: weighted least squares (Chapter 11).
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Non-constant variance

Breusch-Pagan test (pp. 118–119): tests whether the log
error variance increases or decreases linearly with the
predictor(s). Where Yi ∼ N(x′iβ, σ

2
i ), set

log σ2i = α0 + α1xi1 + · · ·αkxik and test
H0 : α1 = · · · = αk = 0, i.e. log σ2i = α0. Requires large
samples & assumes normal errors.

Brown-Forsythe test (pp. 116–117): Robust to non-normal
errors. Requires user to break data into groups and test for
constancy error variance across groups (not natural for
continuous data).

Graphical methods have advantage of checking for general
violations, not just violation of a specific type.

10 / 25



Breusch Pagan test in SAS

PROC MODEL carries out a modified version of the test where
σi = σ + α1xi1 + · · ·αikxik and H0 : α1 = · · · = αk = 0. If H0 is
true then σi = σ for i = 1, . . . , n.

proc model data=studio;

parms beta0 beta1 beta2;

sales=beta0+people16*beta1+income*beta2;

fit sales / breusch=(1 income sales);

Nonlinear OLS Summary of Residual Errors

DF DF Adj

Equation Model Error SSE MSE Root MSE R-Square R-Sq Label

sales 3 18 2180.9 121.2 11.0074 0.9167 0.9075 Sales ($1000$)

Nonlinear OLS Parameter Estimates

Approx Approx

Parameter Estimate Std Err t Value Pr > |t|

beta0 -68.8571 60.0170 -1.15 0.2663

beta1 1.45456 0.2118 6.87 <.0001

beta2 9.3655 4.0640 2.30 0.0333

Heteroscedasticity Test

Equation Test Statistic DF Pr > ChiSq Variables

sales Breusch-Pagan 2.10 2 0.3503 1, income, sales

With p = 0.35 we do not reject H0 : σi = σ at α = 0.05, no
evidence of non-constant variance.
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Assumption 3: errors are normally distributed

Caution: your estimate of ε, given by e = Y−Xb, is only as good
as the model for your mean! Changing the mean can drastically
change the residuals e and any residual plots or formal tests based
on them. Diagnostics include...

Q-Q plot of e1, . . . , en.

Formal test for normality: Shapiro-Wilk (Section 3.5),
essentially based on the correlation coefficient r for expected
versus observed in normal Q-Q plot.

Remedy: transformation of Y and or any of x1, . . . , xk ,
nonparametric methods (e.g. additive models), robust
regression (least sum of absolute distances), median
regression.
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Standard diagnostics from ODS GRAPHICS
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Test for normal residuals in Portrait data

proc reg data=studio;

model sales=people16 income;

output out=temp r=residual;

proc univariate data=temp normal; var residual; run;

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.954073 Pr < W 0.4056

Kolmogorov-Smirnov D 0.147126 Pr > D >0.1500

Cramer-von Mises W-Sq 0.066901 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.432299 Pr > A-Sq >0.2500

We accept (or “do not reject” if you are a purist) H0 : e1, . . . , en
are normal.

The Anderson-Darling tests looks primarily for evidence of
non-normal data in the tails of a distribution; the Shapiro-Wilk
emphasizes lack of symmetry in the distribution; i.e. less emphasis
placed on the tails.
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Comments

With large sample sizes, the normality assumption is not
critical unless you are predicting new observations.

The formal test will not tell you the type of departure from
normality (e.g. bimodal, skew, heavy or light tails, et cetera).

Q-Q plots help answer these questions (if the mean is
specified correctly).
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Assumption 4: Independence

Chapter 12 discusses time-series methods. Handles correlated
errors over time (or space). Can also include time as a
predictor.

If willing to assume some structure on the errors, e.g. AR(1),
then can do a formal test (Chapter 12, e.g. Durbin-Watson
test pp. 484–488).

Christensen, R. and Bedrick, E. (1997). Testing the
independence assumption in linear models. JASA, 92,
1006–1016. Uses “near-replicates” instead of replicates.
(Replicates needed for standard LOF test).

In general, need to test H0 : cov(ε) = diag(σ21, . . . , σ
2
n)

(diagonal), or even stronger H0 : cov(ε) = σ2In (spherical –
constant variance).
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Another example

Problems 6.15, 6.16, 6.17

Y = patient satisfaction (100 point scale)

x1 = age in years

x2 = illness severity (an index)

x3 = anxiety level (an index)

Let’s analyze these data with SAS...
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6.15(b) scatterplot matrix
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SAS code

data sat;

input sat age sev anx;

age_sev=age*sev; age_anx=age*anx; sev_anx=sev*anx; * interactions;

label sat=’Satisfaction (100)’

age=’Age (years)’

sev=’Illness severity (index)’

anx=’Anxiety (index)’;

datalines;

48 50 51 2.3

57 36 46 2.3

66 40 48 2.2

...et cetera...

68 45 51 2.2

59 37 53 2.1

92 28 46 1.8

;

proc sgscatter data=sat; matrix sat age sev anx; run;

options nocenter;

proc reg data=sat;

model sat=age sev anx;

output out=resid r=residual; run;

proc sgscatter data=resid;

plot residual*age_sev residual*age_anx residual*sev_anx; run;
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Regression output

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 9120.46367 3040.15456 30.05 <.0001

Error 42 4248.84068 101.16287

Corrected Total 45 13369

Root MSE 10.05798 R-Square 0.6822

Dependent Mean 61.56522 Adj R-Sq 0.6595

Coeff Var 16.33711

Parameter Estimates

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 158.49125 18.12589 8.74 <.0001

age Age (years) 1 -1.14161 0.21480 -5.31 <.0001

sev Illness severity (index) 1 -0.44200 0.49197 -0.90 0.3741

anx Anxiety (index) 1 -13.47016 7.09966 -1.90 0.0647
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Diagnostics
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Residuals vs. predictors
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Residuals vs. interactions
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Some answers to textbook problems...

6.15(c) ŝat = 158.5− 1.14age− 0.442sev− 13.5anx.
b2 = −0.442; for every unit increase in the illness severity
index, mean satisfaction is reduced by 0.442 units.

6.15(e) There is a slight increase in variability for ei vs. Ŷi ,
but overall it looks okay. The normal probability plot of the
residuals looks fine (relatively straight). The plots of the
residuals vs. each predictor and each two-way interaction all
look appropriately “random.”

6.15(g) The Breusch-Pagan test gives p = 0.46, no evidence
of non-constant variance.
proc model data=sat;

parms beta0 beta1 beta2 beta3;

sat=beta0+age*beta1+sev*beta2+anx*beta3;

fit sat / breusch=(1 age sev anx);

Heteroscedasticity Test

Equation Test Statistic DF Pr > ChiSq Variables

sat Breusch-Pagan 2.56 3 0.4648 1, age, sev, anx
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Some answers to textbook problems...

6.16(a) We reject H0 : β1 = β2 = β3 = 0 at the 1% level
(p < 0.0001 from the ANOVA table). One or more regressors
are important in the model.

6.16(c) R2 = 0.68 so 68% of the variability is explained by the
regression surface.

6.17(a,b) I added “ . 35 45 2.2” to the data and changed
the model statement to model sat=age sev anx / clm
cli alpha=0.1; obtaining

Dependent Predicted Std Error

Obs Variable Value Mean Predict 90% CL Mean 90% CL Predict

1 . 69.0103 2.6646 64.5285 73.4920 51.5097 86.5109

We are 90% confident that the true mean satisfaction is
between 64.5 and 73.5 units for 35 year-olds with severity 45
and anxiety 2.2. We would predict a new patient from this
population to have a satisfaction in the range 51.5 to 86.5.
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