Sections 3.9 and 6.8: Transformations

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

Transformations of variables (Section 3.9 & p. 236)

- Some violations of our model assumptions may be fixed by transforming one or more predictors x_1, \ldots, x_k or Y.
- If the *only* problem is a nonlinear relationship between Y and the predictors, i.e. constant variance seems okay, a transformation of one or more of the x_1, \ldots, x_k is preferred.
- If non-constant variance appears in one or more plots of Y versus the predictors, a transformation in Y can help...or make it worse!
- Data analysis is an art. The best way to learn how to analyze data is to analyze data.
- A nonlinear relationship *could* manifest itself the scatterplot matrix of Y_i versus x_{ij} for j = 1,..., k, or the residuals e_i versus x_{ij} from an initial fit.
- The chosen transformation should roughly mimic the relationship seen in the plot.

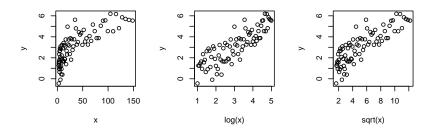
Examples of transformations for predictors are:

- $x^* = \log(x)$
- $x^* = \sqrt{x}$
- $x^* = 1/x$
- $x^* = \exp(x)$ or $x^* = \exp(-x)$

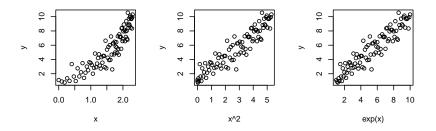
See Figure 3.13, page 130.

We will examine *marginal* relationships and transformation "fixes." For multiple regression these might better be residual plots versus predictors, or better yet added variable plots.

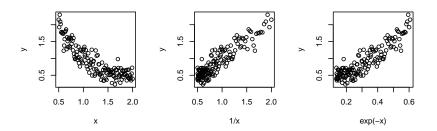
Example 1: transforming a predictor



Example 2: transforming a predictor



Example 3: transforming a predictor



If there is evidence of nonconstant error variance, a transformation of Y can often fix things. Examples include:

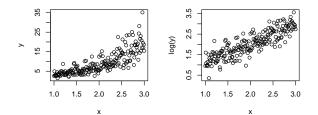
- $Y^* = \log(Y)$
- $Y^* = \sqrt{Y}$
- $Y^* = 1/Y$

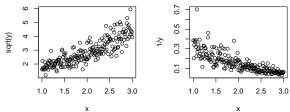
See Figure 3.15, page 132.

All of these are included in the Box-Cox family of transformations.

For some data, a transformation in Y may be followed by one or more transformations in the x_{i1}, \ldots, x_{ik} .

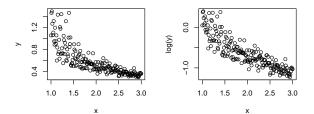
Example 4: transforming the response

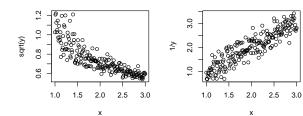




х

Example 5: transforming the response





9 / 24

Box-Cox transformations are of the type

$$Y^* = Y^\lambda$$

where λ is estimated from the data, typically $-3 \leq \lambda \leq 3.$ These include

$$\begin{array}{lll} \lambda=2 & Y^*=Y^2\\ \lambda=1 & Y^*=Y & \text{no transformation!}\\ \lambda=0 & Y^*=\log(Y) & \text{by definition}\\ \lambda=-1 & Y^*=1/Y & \text{reciprocal}\\ \lambda=-2 & Y^*=1/Y^2 \end{array}$$

SAS will help you pick λ automatically in proc transreg.

Note: When working with transformed data, predictions and interpretations of regression coefficients are all in terms of the *transformed variables*.

To state the conclusions in terms of the original variables, we need to do a reverse transformation...carefully.

- Consider time-to-failure in minutes of *n* = 50 electrical components.
- Each component was manufactured using a ratio of two types of materials; this ratio was fixed at 0.1, 0.2, 0.3, 0.4, and 0.5.
- Ten components were observed to fail at each of these manufacturing ratios in a designed experiment.
- It is of interest to model the failure-time as a function of the ratio, to determine if a significant relationship exists, and if so to describe the relationship simply.

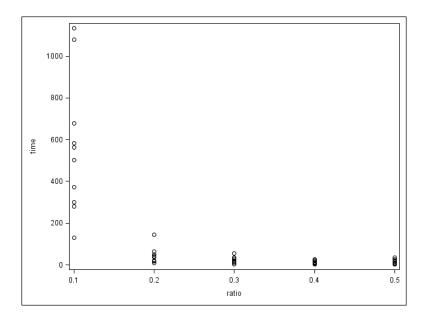
SAS code: data & plot

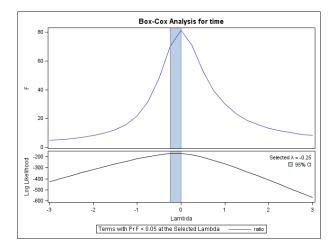
data elec;										
input ratio time CC;										
datalines;										
0.5	34.9 0.5	9.3 0.5	6.0 0.5	3.4 0.5	14.9					
0.5	9.0 0.5	19.9 0.5	2.3 0.5	4.1 0.5	25.0					
0.4	16.9 0.4	11.3 0.4	25.4 0.4	10.7 0.4	24.1					
0.4	3.7 0.4	7.2 0.4	18.9 0.4	2.2 0.4	8.4					
0.3	54.7 0.3	13.4 0.3	29.3 0.3	28.9 0.3	21.1					
0.3	35.5 0.3	15.0 0.3	4.6 0.3	15.1 0.3	8.7					
0.2	9.3 0.2	37.6 0.2	21.0 0.2	143.5 0.2	21.8					
0.2	50.5 0.2	40.4 0.2	63.1 0.2	41.1 0.2	16.5					
0.1	373.0 0.1	584.0 0.1	1080.1 0.1	300.8 0.1	130.8					
0.1	280.2 0.1	679.2 0.1	501.6 0.1	1134.3 0.1	562.6					
:										

proc sgscatter; plot time*ratio; run; * non-constant variance;

```
proc transreg data=elec; * gets Box-Cox analysis;
model boxcox(time) = identity(ratio); run;
```

Multiple predictors are included with, e.g., identity(ratio temperature)





Box Cox output chooses log(Y) as "convenient"

Box-Cox Transformation Information for time

Lambda	R-Square	Log Like
-3.00	0.09	-426.733
-2.75	0.10	-398.478
-2.50	0.11	-370.675
-2.25	0.13	-343.407
-2.00	0.14	-316.779
-1.75	0.17	-290.917
-1.50	0.20	-265.983
-1.25	0.25	-242.186
-1.00	0.31	-219.829
-0.75	0.40	-199.453
-0.50	0.50	-182.292
-0.25	0.59	-171.350 <
0.00 +	0.63	-171.615 *
0.25	0.60	-184.969
0.50	0.53	-207.524
0.75	0.45	-235.373
1.00	0.38	-266.617
1.25	0.33	-300.324
1.50	0.28	-335.898
1.75	0.25	-372.902
2.00	0.22	-411.006
2.25	0.19	-449.964
2.50	0.17	-489.595
2.75	0.16	-529.764
3.00	0.15	-570.371

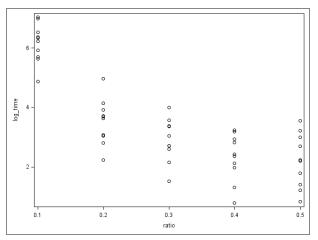
- < Best Lambda
- * 95% Confidence Interval
- + Convenient Lambda

Transformed response log(Y) fixed non-constant variance

Add

log_time=log(time);

in data step and plot again.

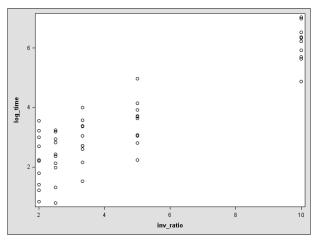


Try transforming the predictor using 1/x

Add

```
inv_ratio=1/ratio;
```

in data step and plot again.

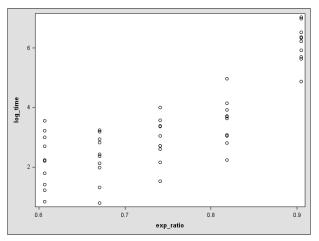


Try transforming the predictor using exp(-x)

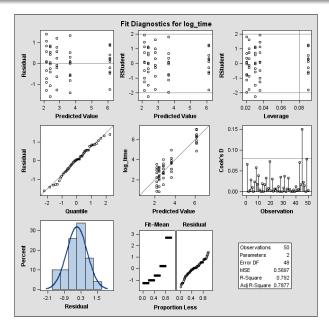
Add

```
exp_ratio=exp(-ratio);
```

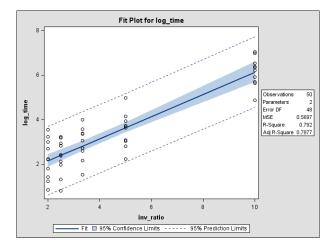
in data step and plot again.



Diagnostics from regressing $\log(Y)$ on 1/x



Fit on transformed data



Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	1.15322	0.19905	5.79	<.0001
inv_ratio	1	0.49738	0.03679	13.52	<.0001

The fitted regression line is $log(time) = 1.15322 + \frac{0.49738}{ratio}$.

For a ratio of $x_h = 0.25$ we get $\widehat{\log(\text{time})} = 1.15322 + \frac{0.49738}{0.25} = 3.14274.$

Exponentiating both sides we get $\widehat{\text{time}} = e^{3.143} = 23.2$ minutes.

Question: Is this the estimated mean failure time for the population with ratio $x_h = 0.25$? Is it the estimated *median* time?

Question: How about a prediction interval? How would you get one?

Question: Let $g(Y) \sim N(\mu, \sigma^2)$ for some g(x) monotone (and so invertible) function. What is the median of Y?

Question: Let $P(a < g(Y_h) < b) = 0.95$ (prediction interval for new $g(Y_h)$). How do you get a prediction interval for Y_h ?

Question: What can you say about *any* Box-Cox transformation of the (positive) response (e.g. log, square root, reciprocal)?

Example: Surgical unit example

Section 9.2: Surgical unit example (pp. 350–352)

- $x_1 =$ blood-clotting score
- $x_2 = \text{prognostic index}$
- x_3 = enzyme function test score
- $x_4 =$ liver function test score
- $x_5 = age (years)$

•
$$x_6 = \text{gender} (0=\text{male}, 1=\text{female})$$

- x_7 = alcohol use (x_7 = 1 indicates moderate)
- x_8 = alcohol use (x_8 = 1 indicates severe)
- Y = survival time (days?) after liver operation

For no alcohol use, $x_7 = x_8 = 0$ (baseline).