Sections 7.1, 7.2, 7.4, & 7.6

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

- n = 20 healthy females 25–34 years old.
 - x₁ = triceps skinfold thickness (mm)
 - $x_2 = \text{thigh circumference (cm)}$
 - $x_3 = midarm circumference (cm)$

Obtaining Y_i , the percent of the body that is purly fat, requires immersing a person in water. Want to develop model based on simple body measurements that avoids people getting wet.

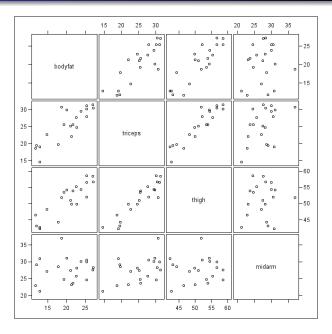
SAS code

********* Body fat data from Chapter 7 * data body; input triceps thigh midarm bodyfat @0; cards; 19.5 43.1 29.1 11.9 24.7 49.8 28.2 22.8 30.7 51.9 37.0 18.7 29.8 54.3 31.1 20.1 19.1 42.2 30.9 12.9 25.6 53.9 23.7 21.7 31.4 58.5 27.6 27.1 27.9 52.1 30.6 25.4 22.1 49.9 23.2 21.3 25.5 53.5 24.8 19.3 31.1 56.6 30.0 25.4 30.4 56.7 28.3 27.2 18.7 46.5 23.0 11.7 44.2 28.6 17.8 19.7 14.6 42.7 21.3 12.8 29.5 54.4 30.1 23.9 27.7 55.3 25.7 22.6 30.2 58.6 24.6 25.4 27.1 14.8 25.2 27.5 21.1 22.7 48.2 51.0

;

proc sgscatter; matrix bodyfat triceps thigh midarm; run;

Scatterplot



Correlation coefficients

proc corr data=body; var triceps thigh midarm; run;

Pearson Correlation Coefficients, N = 20 Prob > |r| under H0: Rho=0

	triceps	thigh	midarm
triceps	1.00000	0.92384 <.0001	0.45778 0.0424
thigh	0.92384 <.0001	1.00000	0.08467 0.7227
midarm	0.45778 0.0424	0.08467 0.7227	1.00000

There is high correlation among the predictors. For example r = 0.92 for triceps and thigh. These two variables are *essentially carrying the same information*. Maybe only one or the other is really needed.

In general, one predictor may be essentially perfectly predicted by the remaining predictors (a high "partial correlation"), and so would be unecessary if the other predictors are in the model. "Extra" sums of squares are defined as the difference in SSE between a model with some predictors and a larger model that adds *additional* predictors.

Fact: As predictors are added, the SSE can only decrease. The extra sums of squares is how much the SSE decreases:

def'n Let x_1, x_2, \ldots, x_k be predictors in a model.

 $SSR(x_{j+1},...,x_k|x_1,x_2,...,x_j) = SSE(x_1,x_2,...,x_j) - SSE(x_1,x_2,...,x_j,x_{j+1},...,x_k),$

the difference in the sums of squared errors from the reduced to the full model.

This is how much of the total variation in SSTO is further explained by adding the new predictors.

Example with k = 8 predictors

The predictors under consideration are

 $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8.$

There are two models

Reduced : x_1, x_3, x_5, x_6, x_8 Full : $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$

Extra SS =
$$SSR(x_2, x_4, x_7 | x_1, x_3, x_5, x_6, x_8)$$

= $SSE(reduced) - SSE(full)$
= $SSE(x_1, x_3, x_5, x_6, x_8) - SSE(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$
= $SSR(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) - SSR(x_1, x_3, x_5, x_6, x_8)$

This is how much *additional* total variability (SSTO) is explained by adding x_2, x_4, x_7 to a model that already has x_1, x_3, x_5, x_6, x_8 . We can formally test whether a certain set of predictors is useless, *in the presence* of other predictors in the model. This is the *general linear test* we talked about a few lectures ago (in simple linear regression).

In the example above, we can test whether x_2, x_4, x_7 are needed if x_1, x_3, x_5, x_6, x_8 are in the model. If full (with $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$) model has much lower SSE than reduced model (without x_2, x_4, x_7) then at least one of x_2, x_4, x_7 is needed.

F-test

Say we want to test whether we can drop q variables from a model that has p = k + 1 (including the intercept), q < p.

Let *R* denote the reduced model and *F* the full, and *SSE*(*R*), *SSE*(*F*) denote the sums of squared errors from the two models. To test $H_0: \beta_{j_1} = \beta_{j_2} = \cdots = \beta_{j_q} = 0$ in the full model

$$F^* = \frac{[SSE(R) - SSE(F)]/q}{SSE(F)/(n-p)}$$

~ $F(q, n-p)$

If $H_0: \beta_{j_1} = \beta_{j_2} = \cdots = \beta_{j_q} = 0$ is true; a p-value for the test is $P(F(q, n-p) > F^*)$.

Can carry this out in SAS using test in proc reg.

To test $H_0: \beta_2 = \beta_4 = \beta_7 = 0$,

$$F^* = \frac{[SSE(reduced) - SSE(full)]/(\# \text{ parameters in test})}{MSE(full)}$$

=
$$\frac{[SSE(x_1, x_3, x_5, x_6, x_8) - SSE(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)]/3}{SSE(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)/(n-9)}$$

=
$$\frac{SSR(x_2, x_4, x_7|x_1, x_3, x_5, x_6, x_8)/3}{SSE(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)/(n-9)}$$

~
$$F(3, n-9)$$

if $H_0: \beta_2 = \beta_4 = \beta_7 = 0$ is true.

Bodyfat example

```
proc reg data=body;
model bodyfat=triceps thigh midarm;
test thigh=0, midarm=0; run;
```

Test 1 Results for Dependent Variable bodyfat

		Mean		
Source	DF	Square	F Value	Pr > F
Numerator	2	22.35741	3.64	0.0500
Denominator	16	6.15031		

Reject $H_0: \beta_2 = \beta_3 = 0$ in

 $fat_i = \beta_0 + \beta_1 triceps_i + \beta_2 thigh_i + \beta_3 midarm_i + \epsilon_i$

with p = 0.05.

Type I (sequential) sums of squares

Note (pp. 260–262): Say you have k = 4 predictors. Then the SSR for the full model can be written

$$SSR = SSR(x_1, x_2, x_3, x_4)$$

= SSR(x_1) + SSR(x_2|x_1) + SSR(x_3|x_1, x_2) + SSR(x_4|x_1, x_2, x_3).

These are called *sequential sums of squares*, or Type I sums of squares. They explain how much variability is soaked up by adding

predictors sequentially to a model. There are four corresponding hypothesis tests with these sequential sums of squares:

Model	Hypothesis	F-statistic
$Y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$	$H_0:\beta_1=0$	$\frac{SSR(x_1)}{MSE(x_1)}$
$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$	$H_0:\beta_2=0$	$\frac{SSR(x_2 x_1)}{MSE(x_1,x_2)}$
$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i$	$H_0:\beta_3=0$	$\frac{SSR(x_3 x_1, x_2)}{MSE(x_1, x_2, x_3)}$
$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \beta_{3}x_{i3} + \beta_{4}x_{i4} + \epsilon_{i}$	$H_0: \beta_4 = 0$	$\frac{SSR(x_4 x_1, x_2, x_3)}{MSE(x_1, x_2, x_3, x_4)}$

Bodyfat example

You can get sequential SS from proc reg by adding ss1 as a model option. proc glm gives them automatically.

proc glm data=body; model bodyfat=triceps thigh midarm / solution; run;						
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
triceps	1	352.2697968	352.2697968	57.28	<.0001	
thigh	1	33.1689128	33.1689128	5.39	0.0337	
midarm	1	11.5459022	11.5459022	1.88	0.1896	

- Reject $H_0: \beta_1 = 0$ in $fat_i = \beta_0 + \beta_1 triceps_i + \epsilon_i$ with p < 0.0001.
- Reject $H_0: \beta_2 = 0$ in $fat_i = \beta_0 + \beta_1 triceps_i + \beta_2 thigh_i + \epsilon_i$ with p = 0.034.
- Accept H_0 : $\beta_3 = 0$ in fat_i = $\beta_0 + \beta_1$ triceps_i + β_2 thigh_i + β_3 midarm_i + ϵ_i with p = 0.190.
- Order entered (triceps, thigh, midarm) matters!

ANOVA table & decomposing the SSR(F)

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	396.9846118	132.3282039	21.52	<.0001
Error	16	98.4048882	6.1503055		
Corrected Total	19	495.3895000			

The sequential extra sums of squares is given on the last slide: $SSR(x_1) = 352.3$; $SSR(x_2|x_1) = 33.2$, and $SSR(x_3|x_1, x_2) = 11.5$. Almost all of the $SSR(x_1, x_2, x_3) = 397.0$ is explained by x_1 (triceps) alone.

Also note, as required,

 $SSR(x_1, x_2, x_3) = 397.0 = 352.3 + 33.2 + 11.5 = SSR(x_1) + SSR(x_2|x_1) + SSR(x_3|x_1, x_2).$

Finally, we strongly reject H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$.

We can standardize extra sums of squares to be between 0 and 1 (like R^2).

The **coefficient of partial determination** is the fraction by which the sum of squared errors is reduced by adding predictor(s) to an existing model. Examples:

• $R_{Y2|1}^2 = SSR(x_2|x_1)/SSE(x_1)$ • $R_{Y3|12}^2 = SSR(x_3|x_1, x_2)/SSE(x_1, x_2)$ • $R_{Y32|1}^2 = SSR(x_2, x_3|x_1)/SSE(x_1)$

For example, if $R_{Y3|12}^2 = 0.5$ then 50% of the remaining variability is explained by adding x_3 to a model that already had x_1 and x_2 .

Bodyfat example

In proc reg you can get R_{Y1}^2 , $R_{Y2|1}^2$, and $R_{Y3|12}^2$ by adding pcorr1 as a model option. you can get $R_{Y1|23}^2$, $R_{Y2|13}^2$, and $R_{Y3|12}^2$ by adding pcorr2.

proc reg data=body; model bodyfat=triceps thigh midarm / pcorr1; model bodyfat=triceps thigh midarm / pcorr2; run;

						Squared
		Parameter	Standard			Partial
Variable	DF	Estimate	Error	t Value	Pr > t	Corr Type I
Intercept	1	117.08469	99.78240	1.17	0.2578	
triceps	1	4.33409	3.01551	1.44	0.1699	0.71110
thigh	1	-2.85685	2.58202	-1.11	0.2849	0.23176
midarm	1	-2.18606	1.59550	-1.37	0.1896	0.10501
						Causarad
						Squared
		Parameter	Standard			Partial
Variable	DF	Estimate	Error	t Value	Pr > t	Corr Type II
Intercept	1	117.08469	99.78240	1.17	0.2578	
triceps	1	4.33409	3.01551	1.44	0.1699	0.11435
thigh	1	-2.85685	2.58202	-1.11	0.2849	0.07108
midarm	1	-2.18606	1.59550	-1.37	0.1896	0.10501

Parameter Estimates

Recall: In the body fat example, the F-test for testing $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ was *highly* significant, but individual t-tests for dropping any of x_1 , x_2 , or x_3 were *not* significant!

The set x_1, x_2, x_3 are useful for explaining body fat, but none of the three are useful *in the presence of the other two*.

Why? The predictors are measuring similar phenomena; their sample values are highly correlated. For example, r = 0.924 between triceps thickness x_1 and thigh circumference x_2 .

This is known as *multicollinearity* among the predictors.

- Model may still provide a good fit and precise prediction/estimation of the response.
- Several estimated regression coefficients b_1, b_2, \ldots, b_k will have large standard errors, leading to conclusions that individual predictors are *not significant* although overall F-test may be *highly* significant.
- Concept of "holding all other predictors constant" doesn't make sense in practice.
- Signs of regression coefficients may be "opposite" of intuition (or what we might think *marginally* they might be based on a scatterplot).

Bodyfat example

proc glm data=body; model bodyfat=triceps thigh midarm / solution; run;

			Sum of				
Source		DF	Squares	Mear	n Square	F Value	Pr > F
Model		3 39	6.9846118	132.	3282039	21.52	<.0001
Error		16 9	8.4048882	6.	1503055		
Corrected T	otal	19 49	5.3895000)			
R-Square	Coeff Var	Root MSE	bodyfa	t Mean			
0.801359	12.28017	2.479981	20	.19500			
		Sta	ndard				
Parameter	Estimate		Error	t Value	Pr > t		
Intercept	117.0846948	99.782	40295	1.17	0.2578		
triceps	4.3340920	3.015	51136	1.44	0.1699		
thigh	-2.8568479	2.582	01527	-1.11	0.2849		
midarm	-2.1860603	1.595	49900	-1.37	0.1896		

Two of the three regression effects are *negative*. Holding midarm and triceps constant, increasing the thigh circumference 1 mm *decreases* bodyfat. Does this make sense?

Predictor x_j has a variance inflation factor of

$$\forall IF_j = \frac{1}{1 - R_j^2},$$

where R_j^2 is the R^2 from regressing x_j on the remaining predictors $x_1, x_2, \ldots, x_{j-1}, x_{j+1}, \ldots, x_k$. High R_j^2 (near 1) $\Rightarrow x_j$ is linearly associated with other predictors \Rightarrow high VIF_j .

- $VIF_j \approx 1 \Rightarrow x_j$ is not involved in any multicollinearity.
- $VIF_j > 10 \Rightarrow x_j$ is involved in severe multicollinearity.

model bodyfat = triceps thigh midarm / vif;

Parameter Estimates

		Parameter	Standard			Variance
Variable	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	1	117.08469	99.78240	1.17	0.2578	0
triceps	1	4.33409	3.01551	1.44	0.1699	708.84291
thigh	1	-2.85685	2.58202	-1.11	0.2849	564.34339
midarm	1	-2.18606	1.59550	-1.37	0.1896	104.60601

What do you conclude?

Remedies for multicollinearity

- Drop one or more predictors from the model. We'll discuss this in Chapter 9.
- More advanced: **principal components regression** uses indexes (new predictors) that are linear combinations of the original predictors as predictors in a new model. The indexes are selected to be uncorrelated. Disadvantage: the indexes might be hard to interpret.
- More advanced: ridge regression (Section 11.2).
- There is a handout on the course webpage giving more intuition behind the VIF_i if you are interested.