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Chapter 7 example: Body fat

n = 20 healthy females 25–34 years old.

x1 = triceps skinfold thickness (mm)

x2 = thigh circumference (cm)

x3 = midarm circumference (cm)

Y = body fat (%)

Obtaining Yi , the percent of the body that is purly fat, requires
immersing a person in water. Want to develop model based on
simple body measurements that avoids people getting wet.
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SAS code

*******************************

* Body fat data from Chapter 7

*******************************;

data body;

input triceps thigh midarm bodyfat @@;

cards;

19.5 43.1 29.1 11.9 24.7 49.8 28.2 22.8

30.7 51.9 37.0 18.7 29.8 54.3 31.1 20.1

19.1 42.2 30.9 12.9 25.6 53.9 23.7 21.7

31.4 58.5 27.6 27.1 27.9 52.1 30.6 25.4

22.1 49.9 23.2 21.3 25.5 53.5 24.8 19.3

31.1 56.6 30.0 25.4 30.4 56.7 28.3 27.2

18.7 46.5 23.0 11.7 19.7 44.2 28.6 17.8

14.6 42.7 21.3 12.8 29.5 54.4 30.1 23.9

27.7 55.3 25.7 22.6 30.2 58.6 24.6 25.4

22.7 48.2 27.1 14.8 25.2 51.0 27.5 21.1

;

proc sgscatter; matrix bodyfat triceps thigh midarm; run;
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Scatterplot
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Correlation coefficients

proc corr data=body; var triceps thigh midarm; run;

Pearson Correlation Coefficients, N = 20

Prob > |r| under H0: Rho=0

triceps thigh midarm

triceps 1.00000 0.92384 0.45778

<.0001 0.0424

thigh 0.92384 1.00000 0.08467

<.0001 0.7227

midarm 0.45778 0.08467 1.00000

0.0424 0.7227

There is high correlation among the predictors. For example
r = 0.92 for triceps and thigh. These two variables are essentially
carrying the same information. Maybe only one or the other is
really needed.

In general, one predictor may be essentially perfectly predicted by
the remaining predictors (a high “partial correlation”), and so
would be unecessary if the other predictors are in the model.
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7.1 Extra sums of squares

“Extra” sums of squares are defined as the difference in SSE
between a model with some predictors and a larger model that
adds additional predictors.

Fact: As predictors are added, the SSE can only decrease. The
extra sums of squares is how much the SSE decreases:

def’n Let x1, x2, . . . , xk be predictors in a model.

SSR(xj+1, . . . , xk |x1, x2, . . . , xj ) = SSE(x1, x2, . . . , xj )−SSE(x1, x2, . . . , xj , xj+1, . . . , xk ),

the difference in the sums of squared errors from the reduced to
the full model.

This is how much of the total variation in SSTO is further
explained by adding the new predictors.
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Example with k = 8 predictors

The predictors under consideration are

x1, x2, x3, x4, x5, x6, x7, x8.

There are two models

Reduced : x1, x3, x5, x6, x8

Full : x1, x2, x3, x4, x5, x6, x7, x8

Extra SS = SSR(x2, x4, x7|x1, x3, x5, x6, x8)

= SSE (reduced)− SSE (full)

= SSE (x1, x3, x5, x6, x8)− SSE (x1, x2, x3, x4, x5, x6, x7, x8)

= SSR(x1, x2, x3, x4, x5, x6, x7, x8)− SSR(x1, x3, x5, x6, x8)

This is how much additional total variability (SSTO) is explained
by adding x2, x4, x7 to a model that already has x1, x3, x5, x6, x8.
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7.2 Associated tests

We can formally test whether a certain set of predictors is useless,
in the presence of other predictors in the model. This is the
general linear test we talked about a few lectures ago (in simple
linear regression).

In the example above, we can test whether x2, x4, x7 are needed if
x1, x3, x5, x6, x8 are in the model. If full (with
x1, x2, x3, x4, x5, x6, x7, x8) model has much lower SSE than reduced
model (without x2, x4, x7) then at least one of x2, x4, x7 is needed.
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F-test

Say we want to test whether we can drop q variables from a model
that has p = k + 1 (including the intercept), q < p.

Let R denote the reduced model and F the full, and SSE (R),
SSE (F ) denote the sums of squared errors from the two models.
To test H0 : βj1 = βj2 = · · · = βjq = 0 in the full model

F∗ =
[SSE(R)− SSE(F )]/q

SSE(F )/(n − p)

∼ F (q, n − p)

If H0 : βj1 = βj2 = · · · = βjq = 0 is true; a p-value for the test is
P(F (q, n − p) > F ∗).

Can carry this out in SAS using test in proc reg.
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F-test example with k = 8 predictors

To test H0 : β2 = β4 = β7 = 0,

F∗ =
[SSE(reduced)− SSE(full)]/(# parameters in test)

MSE(full)

=
[SSE(x1, x3, x5, x6, x8)− SSE(x1, x2, x3, x4, x5, x6, x7, x8)]/3

SSE(x1, x2, x3, x4, x5, x6, x7, x8)/(n − 9)

=
SSR(x2, x4, x7|x1, x3, x5, x6, x8)/3

SSE(x1, x2, x3, x4, x5, x6, x7, x8)/(n − 9)

∼ F (3, n − 9)

if H0 : β2 = β4 = β7 = 0 is true.
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Bodyfat example

proc reg data=body;

model bodyfat=triceps thigh midarm;

test thigh=0, midarm=0; run;

Test 1 Results for Dependent Variable bodyfat

Mean

Source DF Square F Value Pr > F

Numerator 2 22.35741 3.64 0.0500

Denominator 16 6.15031

Reject H0 : β2 = β3 = 0 in

fati = β0 + β1tricepsi + β2thighi + β3midarmi + εi

with p = 0.05.
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Type I (sequential) sums of squares

Note (pp. 260–262): Say you have k = 4 predictors. Then the
SSR for the full model can be written

SSR = SSR(x1, x2, x3, x4)

= SSR(x1) + SSR(x2|x1) + SSR(x3|x1, x2) + SSR(x4|x1, x2, x3).

These are called sequential sums of squares, or Type I sums of
squares. They explain how much variability is soaked up by adding

predictors sequentially to a model. There are four corresponding
hypothesis tests with these sequential sums of squares:

Model Hypothesis F-statistic

Yi = β0 + β1xi1 + εi H0 : β1 = 0
SSR(x1)
MSE(x1)

Yi = β0 + β1xi1 + β2xi2 + εi H0 : β2 = 0
SSR(x2|x1)
MSE(x1,x2)

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi H0 : β3 = 0
SSR(x3|x1,x2)
MSE(x1,x2,x3)

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi H0 : β4 = 0
SSR(x4|x1,x2,x3)
MSE(x1,x2,x3,x4)
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Bodyfat example

You can get sequential SS from proc reg by adding ss1 as a
model option. proc glm gives them automatically.

proc glm data=body;

model bodyfat=triceps thigh midarm / solution; run;

-----------------------------------------------------------------------------------

Source DF Type I SS Mean Square F Value Pr > F

triceps 1 352.2697968 352.2697968 57.28 <.0001

thigh 1 33.1689128 33.1689128 5.39 0.0337

midarm 1 11.5459022 11.5459022 1.88 0.1896

-----------------------------------------------------------------------------------

Reject H0 : β1 = 0 in fati = β0 + β1tricepsi + εi with
p < 0.0001.

Reject H0 : β2 = 0 in fati = β0 + β1tricepsi + β2thighi + εi
with p = 0.034.

Accept H0 : β3 = 0 in
fati = β0 + β1tricepsi + β2thighi + β3midarmi + εi with
p = 0.190.

Order entered (triceps, thigh, midarm) matters!

13 / 22



ANOVA table & decomposing the SSR(F)

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 396.9846118 132.3282039 21.52 <.0001

Error 16 98.4048882 6.1503055

Corrected Total 19 495.3895000

The sequential extra sums of squares is given on the last slide:
SSR(x1) = 352.3; SSR(x2|x1) = 33.2, and SSR(x3|x1, x2) = 11.5.
Almost all of the SSR(x1, x2, x3) = 397.0 is explained by x1
(triceps) alone.

Also note, as required,

SSR(x1, x2, x3) = 397.0 = 352.3+33.2+11.5 = SSR(x1)+SSR(x2|x1)+SSR(x3|x1, x2).

Finally, we strongly reject H0 : β1 = β2 = β3 = 0.
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7.4 Coefficients of partial determination

We can standardize extra sums of squares to be between 0 and 1
(like R2).

The coefficient of partial determination is the fraction by which
the sum of squared errors is reduced by adding predictor(s) to an
existing model. Examples:

R2
Y 2|1 = SSR(x2|x1)/SSE (x1)

R2
Y 3|12 = SSR(x3|x1, x2)/SSE (x1, x2)

R2
Y 32|1 = SSR(x2, x3|x1)/SSE (x1)

For example, if R2
Y 3|12 = 0.5 then 50% of the remaining variability

is explained by adding x3 to a model that already had x1 and x2.
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Bodyfat example

In proc reg you can get R2
Y 1, R2

Y 2|1, and R2
Y 3|12 by adding

pcorr1 as a model option. you can get R2
Y 1|23, R2

Y 2|13, and R2
Y 3|12

by adding pcorr2.

proc reg data=body;

model bodyfat=triceps thigh midarm / pcorr1;

model bodyfat=triceps thigh midarm / pcorr2; run;

-----------------------------------------------------------------------------------

Parameter Estimates

Squared

Parameter Standard Partial

Variable DF Estimate Error t Value Pr > |t| Corr Type I

Intercept 1 117.08469 99.78240 1.17 0.2578 .

triceps 1 4.33409 3.01551 1.44 0.1699 0.71110

thigh 1 -2.85685 2.58202 -1.11 0.2849 0.23176

midarm 1 -2.18606 1.59550 -1.37 0.1896 0.10501

Squared

Parameter Standard Partial

Variable DF Estimate Error t Value Pr > |t| Corr Type II

Intercept 1 117.08469 99.78240 1.17 0.2578 .

triceps 1 4.33409 3.01551 1.44 0.1699 0.11435

thigh 1 -2.85685 2.58202 -1.11 0.2849 0.07108

midarm 1 -2.18606 1.59550 -1.37 0.1896 0.10501

-----------------------------------------------------------------------------------
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7.6 Multicollinearity

Recall: In the body fat example, the F-test for testing
H0 : β1 = β2 = β3 = 0 was highly significant, but individual t-tests
for dropping any of x1, x2, or x3 were not significant!

The set x1, x2, x3 are useful for explaining body fat, but none of
the three are useful in the presence of the other two.

Why? The predictors are measuring similar phenomena; their
sample values are highly correlated. For example, r = 0.924
between triceps thickness x1 and thigh circumference x2.

This is known as multicollinearity among the predictors.
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Effects of multicollinearity

Model may still provide a good fit and precise
prediction/estimation of the response.

Several estimated regression coefficients b1, b2, . . . , bk will
have large standard errors, leading to conclusions that
individual predictors are not significant although overall F-test
may be highly significant.

Concept of “holding all other predictors constant” doesn’t
make sense in practice.

Signs of regression coefficients may be “opposite” of intuition
(or what we might think marginally they might be based on a
scatterplot).
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Bodyfat example

proc glm data=body;

model bodyfat=triceps thigh midarm / solution; run;

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 396.9846118 132.3282039 21.52 <.0001

Error 16 98.4048882 6.1503055

Corrected Total 19 495.3895000

R-Square Coeff Var Root MSE bodyfat Mean

0.801359 12.28017 2.479981 20.19500

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 117.0846948 99.78240295 1.17 0.2578

triceps 4.3340920 3.01551136 1.44 0.1699

thigh -2.8568479 2.58201527 -1.11 0.2849

midarm -2.1860603 1.59549900 -1.37 0.1896

Two of the three regression effects are negative. Holding midarm
and triceps constant, increasing the thigh circumference 1 mm
decreases bodyfat. Does this make sense?
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Detecting multicollinearity

Predictor xj has a variance inflation factor of

VIFj =
1

1− R2
j

,

where R2
j is the R2 from regressing xj on the remaining predictors

x1, x2, . . . , xj−1, xj+1, . . . , xk .
High R2

j (near 1) ⇒ xj is linearly associated with other predictors
⇒ high VIFj .

VIFj ≈ 1⇒ xj is not involved in any multicollinearity.

VIFj > 10⇒ xj is involved in severe multicollinearity.
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VIFj ’s in SAS

model bodyfat = triceps thigh midarm / vif;

-----------------------------------------------------------------------------------

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 117.08469 99.78240 1.17 0.2578 0

triceps 1 4.33409 3.01551 1.44 0.1699 708.84291

thigh 1 -2.85685 2.58202 -1.11 0.2849 564.34339

midarm 1 -2.18606 1.59550 -1.37 0.1896 104.60601

What do you conclude?
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Remedies for multicollinearity

Drop one or more predictors from the model. We’ll discuss
this in Chapter 9.

More advanced: principal components regression uses
indexes (new predictors) that are linear combinations of the
original predictors as predictors in a new model. The indexes
are selected to be uncorrelated. Disadvantage: the indexes
might be hard to interpret.

More advanced: ridge regression (Section 11.2).

There is a handout on the course webpage giving more
intuition behind the VIFj if you are interested.
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