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Salary example in proc glm

Model salary ($1000) as function of age in years, years post-high
school education (educ), & political affiliation (pol), pol = D for
Democrat, pol = R for Republican, and pol = O for other.
data salary;

input salary age educ pol$ @@;

datalines;

38 25 4 D 45 27 4 R 28 26 4 O 55 39 4 D 74 42 4 R 43 41 4 O

47 25 6 D 55 26 6 R 40 29 6 O 65 40 6 D 89 41 6 R 56 42 6 O

56 32 8 D 65 33 8 R 45 35 9 O 75 39 8 D 95 65 9 R 67 69 10 O

;

options nocenter;

proc glm; class pol; model salary=age educ pol / solution; run;

-------------------------------------------------------------

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 26.19002631 B 7.89909191 3.32 0.0056

age 0.89834968 0.19677236 4.57 0.0005

educ 1.50394642 1.18414843 1.27 0.2263

pol D -9.15869409 B 4.84816554 -1.89 0.0814

pol O -25.69911504 B 4.75120999 -5.41 0.0001

pol R 0.00000000 B . . .

The model is
Yi = β0 + β1agei + β2educi︸ ︷︷ ︸

2 continuous

+ β31I{poli = D} + β32I{poli = O} + β33I{poli = R}︸ ︷︷ ︸
1 categorical

+εi

and the coefficient vector is β′ = (β0, β1, β2, β31, β32, β33︸︷︷︸
=0

).
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General linear test in SAS

The contrast statement in SAS PROC GLM lets you test
whether one or more linear combinations of regression effects
are (simultaneously) zero.

To test no difference between Democrats and Republicans,
H0 : β31 = β33 equivalent to H0 : β31 − β33 = 0, use
contrast "Dem=Rep" pol 1 0 -1;. Need to include the
“−1” even though SAS sets β33 = 0!

To test no difference among all political affiliations, use
H0 : β31 − β32 = 0 and H0 : β32 − β33 = 0, given by
contrast "Dem=Rep=Other" pol 1 -1 0, pol 0 1 -1;.

proc glm; class pol; model salary=age educ pol / solution;

contrast "Dem=Rep" pol 1 0 -1;

contrast "Dem=Rep=Other" pol 1 -1 0, pol 0 1 -1;

-------------------------------------------------------------

Contrast DF Contrast SS Mean Square F Value Pr > F

Dem=Rep 1 240.483581 240.483581 3.57 0.0814

Dem=Rep=Other 2 2017.608871 1008.804436 14.97 0.0004

3 / 40



General linear test in SAS

We can also test quadratic effects and interactions.

From the initial fit, educ is not needed with age and pol in
the model. Let’s refit:

proc glm; class pol; model salary=age pol / solution; run;

-------------------------------------------------------------

Source DF Type III SS Mean Square F Value Pr > F

age 1 2648.275862 2648.275862 37.65 <.0001

pol 2 1982.208197 991.104098 14.09 0.0004

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 30.15517241 B 7.41311553 4.07 0.0012

age 1.03448276 0.16859121 6.14 <.0001

pol D -8.63793103 B 4.93543380 -1.75 0.1020

pol O -25.37931034 B 4.84730261 -5.24 0.0001

pol R 0.00000000 B . . .

The Type III SS test H0 : β1 = 0 and H0 : β21 = β22 = β23 = 0 in

Yi = β0 + β1agei + β21I{poli = D}+ β22I{poli = O}+ β23I{poli = R}+ εi
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Drop quadratic effects?

A test of the main effects model versus the quadratic model

proc glm; class pol;

model salary=age pol age*pol age*age / solution;

contrast "drop quadratic effects?" age*age 1, age*pol 1 -1 0, age*pol 1 0 -1;

-------------------------------------------------------------

Contrast DF Contrast SS Mean Square F Value Pr > F

drop quadratic effects? 3 376.8443881 125.6147960 2.27 0.1369

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -22.13053948 B 25.12432158 -0.88 0.3972

age 3.46694474 B 1.16442934 2.98 0.0126

pol D 1.18699006 B 21.44129001 0.06 0.9568

pol O -15.72146564 B 13.51918833 -1.16 0.2695

pol R 0.00000000 B . . .

age*pol D -0.28943698 B 0.61955938 -0.47 0.6495

age*pol O -0.23843048 B 0.32387727 -0.74 0.4770

age*pol R 0.00000000 B . . .

age*age -0.02513595 0.01254539 -2.00 0.0704

We’ll work this out on the board. We can drop the quadratic
effects (p=0.137), although there’s some indication in the table of
regression effects that age2

i might be needed.
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Scatterplots

Scatterplots show the marginal relationship between Y and
each of the x1, . . . , xk . They cannot show you anything about
the joint relationship among the Y , x1, . . . , xk .

If a nonlinear relationship between Y and xj (j = 1, . . . , k)
marginally may or may not be present in the joint relationship.

Actually, any strong relationship between Y and xj marginally
doesn’t mean that xj will be needed in the presence of other
variables.

Seeing no marginal relationship between Y and xj does not
mean that xj is not needed in a model including other
predictors.
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No relationship?

Here Y vs. x1 and Y vs. x2 shows nothing. There seems to be
some multicollinearity though.
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proc reg output

x1 important marginally? Yi = β0 + β1xi1 + εi
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.94576 0.03602 26.26 <.0001

x1 1 0.06974 0.06311 1.11 0.2745

x2 important marginally? Yi = β0 + β2xi2 + εi
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.95180 0.03730 25.52 <.0001

x2 1 0.05603 0.06458 0.87 0.3898

x1, x2 important jointly? Yi = β0 + β1xi1 + β2xi2 + εi
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.08151 0.10876 -0.75 0.4572

x1 1 1.07327 0.11065 9.70 <.0001

x2 1 1.08548 0.11271 9.63 <.0001
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Nonlinear relationship?

Marginally, x1 and x2 have highly nonlinear relationships with Y .
Should we transform?
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proc reg output

Let’s try fitting a simple main effects model without any
transformation.

Yi = β0 + β1xi1 + β2xi2 + εi

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.00036626 0.00130 -0.28 0.7791

x1 1 1.00022 0.00059936 1668.80 <.0001

x2 1 1.00009 0.00060998 1639.54 <.0001

both x1 and x2 are important, but does the model fit okay?
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Model fit is okay

Look at Yi vs. Ŷi and R2!
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No pattern here, either
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9.1 Model building overview (pp. 343–349)

Chapter 9 Model variable selection and validation

Book outlines four steps in data analysis

1 Data collection and preparation (acquiring and “cleaning”).

2 Reduction of explanatory variables (for exploratory
observational studies). Mass screening for “decent” predictors.

3 Model refinement and selection.

4 Model validation.

We usually get data after step 1.
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9.1 Model building overview

Book has flowchart for model building process on p. 344.

Designed experiments are typically easy; experimenter
manipulates treatment variables during experiment (and
expects them to be significant); other variables are collected
to adjust for.

With confirmatory observational studies, the goal is to
determine whether (or how) the response is related to one or
more pre-specified explanatory variables. No need to weed
them out.

Exploratory observational studies are done when we have little
previous knowledge of exactly which predictors are related to
the response. Need to “weed out” good from useless
predictors.

We may have a list of potentially useful predictors; variable
selection can help us “screen out” useless ones and build a
good, predictive model.
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Controlled experiments

These include clinical trials, laboratory experiments on
monkeys and pigs, etc., community-based intervention trials,
etc.

The experimentors control one or more variables that are
related to the reponse. Often these variables are “treatment”
and “control.” Can ascribe causality if populations are the
same except for the control variables.

Sometimes other variables (not experimentally assigned) that
may also affect the response are collected too, e.g. gender,
weight, blood chemistry levels, viral load, whether other
family members smoke, etc.

When building the model the treatment is always included.
Other variables are included as needed to reduce variability
and zoom in on the treatment factors. Some of these
variables may be useful and some not, so part of the model
building process is weeding out “noise” variables.
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Confirmatory observational studies

Used to test a hypothesis built from other studies or a
“hunch.”

Variables involved in the hypothesis (amount of fiber in diet)
that affect the response (cholesterol) are measured along with
other variables that can affect the outcome (age, exercise,
gender, race, etc.) – nothing is controlled. Variables involved
in the hypothesis are called primary variables; the others are
called risk factors; epidemiologists like to “adjust” for “risk
factors.”

Note that your book discusses Vitamin E and cancer on p.
345. Recall what Stan Young discussed in his seminar a few
weeks back?

Usually all variables are retained in the analysis; they were
chosen ahead of time.
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Observational studies

When people are involved, often not possible to conduct
controlled experiments.

Example: maternal smoking affects infant birthweight. One
would have to randomly allocate the treatments “smoking”
and “non-smoking” to pregnant moms – ethical problems.

Investigators consider anything that is easy to measure that
might be related to the response. Many variables are
considered and models painstakenly built. Often called “data
dredging.”
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Observational studies

There’s a problem here – one is sure to find something if they
look hard enough. Often “signals” are there spuriously, and
sometimes in the wrong direction.

The number of variables to consider can be large; there can
be high multicollinearity. Keeping too many predictors can
make prediction worse.

Your textbook says “The identification of “good”...variables
to be included in the...regression model and the determination
of appropriate functional and interaction relations...constitute
some of the most difficult problems in regression analysis.”
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Section 9.2: Surgical unit example

First steps often involve plots:

Plots to indicate correct functional form of predictors and/or
response.
Plots to indicate possible interaction.
Exploration of correlation among predictors (maybe).
Often a first-order model is a good starting point.

Once a reasonable set of potential predictors is identified,
formal model selection begins.

If the number of predictors is large, say k ≥ 10, we can use
(automated) stepwise procedures to reduce the number of
variables (and models) under consideration.
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9.3 Model selection (pp. 353–361)

Once we reduce the set of potential predictors to a reasonable
number, we can examine all possible models and choose the “best”
according to some criterion.

Say we have k predictors x1, . . . , xk and we want to find a good
subset of predictors that predict the data well. There are several
useful criteria to help choose a subset of predictors.
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Adjusted-R2, R2
a

“Regular” R2 measures how well the model predicts the data that
built it. It is possible to have a model with R2 = 1 (predicts the
data that built it perfectly), but has lousy out-of-sample prediction.
The adjusted R2, denoted R2

a provides a “fix” to R2 to provide a
measure of how good the model will predict data not used to build
the model. For a candidate model with p − 1 predictors

R2
a = 1− n − 1

n − p

SSEp

SSTO

(
= 1− MSEp

s2
y

)
.

Equivalent to choosing the model with the smallest MSEp.
If irrelevant variables are added, R2

a may decrease unlike
“regular” R2 (R2

a can be negative!).
R2

a penalizes model for being too complex.
Problem: R2

a is greater for a “bigger” model whenever the
F-statistic for comparing bigger to smaller is greater than 1.
We usually want F-statistics to be a lot bigger than 1 before
adding in new predictors ⇒ too liberal.
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AIC

Choose model with smallest Akaike Information Criterion (AIC).
For normal error model,

AIC = n log(SSEp)− n log(n) + 2p.

n log(SSEp)− n log(n) = C − 2 log{L(β̂, σ̂2)} from the normal
model where C is a constant; we’ll show this on the board.

2p is “penalty” term for adding predictors.

Like R2
a , AIC favors models with small SSE, but penalizes

models with too many variables p.
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SBC (or BIC)

Models with smaller Schwarz Bayesian Criterion (SBC) are
estimated to predict better. SBC is also known as Bayesian
Information Criterion:

BIC = n log(SSEp)− n log(n) + p log(n).

BIC is similar to AIC, but for n ≥ 8, the BIC “penalty term” is
more severe.

Chooses model that “best predicts” the observed data
according to asymptotic criteria.
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Mallow’s Cp

Let F be the full model with all k predictors and R be a reduced
model with p − 1 predictors to be compared to the full model.
Mallows Cp is

Cp =
SSE (R)

MSE (F )
− n + 2p.

Measures the bias in the reduced regression model relative full
model having all k candidate predictors.
The full model is chosen to provide an unbiased estimate
σ̂2 = MSE (x1, . . . , xk). Predictors must be in “correct form”
and important interactions included.
If a reduced model is unbiased, E (Ŷi ) = µi , then E (Cp) = p
(pp. 357–359).
The full model always has Cp = k + 1.
If Cp ≈ p then the reduced model predicts as well as the full
model. If Cp < p then the reduced model is estimated to
predict better than the full model.
In practice, just choose model with smallest Cp.
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Which criteria to use?

R2
a , AIC, BIC, and Cp may given different “best” models, or they

may agree. Ultimate goal is to find model that balances:

A good fit to the data.

Low bias.

Parsimony.

All else being equal, the simpler model is often easier to interpret
and work with. Christensen (1996) recommends Cp and notes the
similarity between Cp and AIC.
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Two methods for “automatically” picking variables

Any regression textbook will caution against not thinking
about the data at all and simply using automated procedures.

Automated procedures cannot assess a good functional form
for a predictor, cannot think about which interactions might
be important, etc.

Anyway, automated procedures are widely used and can
produce good models. They can also produce models that are
substantially inferior to other models built from the same
predictors using scientific input and common sense.
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Two methods for “automatically” picking variables

Two methods are best subsets and stepwise procedures.

Best subsets simply finds the models that are best according
to some statistic, e.g. smallest Cp of a given size. proc reg
does this automatically, but does not enforce hierarchical
model building.

Stepwise procedures add and/or subtract variables one at a
time according to prespecified inclusion/exclusion criteria.
Useful when you have a very large number of variables (e.g.
k > 30). Both proc reg and proc glmselect incorporate
stepwise methods.
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Best subsets for blood pressure data Problem 9.13

Increased arterial blood pressure in lungs can lead to heart
failure in patients with chronic obstructive pulmonary disease
(COPD).

Determining arterial lung pressure is invasive, difficult, and
can hurt patient.

Radionuclide imaging is noninvasive, less risky way to estimate
arterial pressure in lungs.

A cardiologist measured three potential proxies and the
invasive measure on n = 19 COPD patients.

1 x1 = emptying rate of blood into the pumping chamber of the
heart

2 x2 = ejection rate of blood pumped out of the heart into the
lungs

3 x3 = a blood gas.
4 Y = invasive measure of systolic pulmonary arterial pressure
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Best subsets using Cp

data lung;

input y x1 x2 x3 @@; x12=x1*x2; x13=x1*x3; x23=x2*x3; x1sq=x1*x1; x2sq=x2*x2; x3sq=x3*x3;

label y="pulmonary arterial pressure" x1="emptying rate" x2="ejection rate" x3="blood gas";

datalines;

49.0 45.0 36.0 45.0 55.0 30.0 28.0 40.0 85.0 11.0 16.0 42.0

32.0 30.0 46.0 40.0 26.0 39.0 76.0 43.0 28.0 42.0 78.0 27.0

95.0 17.0 24.0 36.0 26.0 63.0 80.0 42.0 74.0 25.0 12.0 52.0

37.0 32.0 27.0 35.0 31.0 37.0 37.0 55.0 49.0 29.0 34.0 47.0

38.0 26.0 32.0 28.0 41.0 38.0 45.0 30.0 12.0 38.0 99.0 26.0

44.0 25.0 38.0 47.0 29.0 27.0 51.0 44.0 40.0 37.0 32.0 54.0

31.0 34.0 40.0 36.0

;

* best subset in proc reg, show 5 models with smallest Cp out of all possible models;

proc reg; model y=x1 x2 x3 x12 x13 x23 x1sq x2sq x3sq / selection=cp best=5;

-------------------------------------------------------------------------------------------

Number in

Model C(p) R-Square Variables in Model

3 -0.0561 0.7922 x1 x2 x12

3 0.6717 0.7784 x1 x2 x1sq

4 1.2140 0.8061 x1 x2 x1sq x2sq

4 1.3025 0.8044 x1 x3 x23 x1sq

4 1.4108 0.8023 x1 x13 x23 x1sq

Only models x1, x2, x1x2; x1, x2, x
2
1 ; and x1, x2, x

2
1 , x

2
2 are

hierarchical.
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9.4 automated variable search (pp. 361–368)

Forward stepwise regression (pp. 364–365)
We start with k potential predictors x1, . . . , xk . We add and delete
predictors one at a time until all predictors are significant at some
preset level. Let αe be the significance level for adding variables,
and αr be significance level for removing them.

Note: We should choose αe < αr ; in book example αe = 0.1 &
αr = 0.15.
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Forward stepwise regression

1 Regress Y on x1 only, Y on x2 only, up to Y on xk only. In
each case, look at the p-value for testing the slope is zero.
Pick the x variable with the smallest p-value to include in the
the model.

2 Fit all possible 2-predictor models (in general j-predictor
models) than include the initially chosen x , along with each
remaining x variable in turn. Pick new x variable with
smallest p-value for testing slope equal to zero in model that
already has first one chosen, as long as p-value < αe . Maybe
nothing is added.

3 Remove the x variable with the largest p-value as long as
p-value > αr . Maybe nothing is removed.

4 Repeat steps (2)-(3) until no x variables can be added or
removed.
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proc glmselect

Forward selection and backwards elimination are similar
procedures; see p. 368. I suggest stepwise of the three.

proc glmselect implements automated variable selection
methods for regression models.

Does stepwise, backwards, and forwards procedures as well as
least angle regression (LAR) and lasso. Flom and Casell
(2007) recommend either of these last two overall traditional
stepwise approaches & note they both do about the same.

The syntax is the same as proc glm, and you can include
class variables, interactions, etc.
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proc glmselect

The hier=single option builds hierarchical models. To do
stepwise as in your textbook cutoffs suggested in your
textbook include select=sl, also sle=0.1 is entry cutoff
and sls=0.15 is cutoff for staying in the model (used by your
book). You can also do model selection using any of AIC,
BIC, Cp, R2

a rather than p-value cutoffs.
proc glmselect will stop when you cannot add or remove any
predictors, but the “best” model may have been found in an
earlier iteration. Using choose=cp, for example, gives the
model with the lowest Cp as the final model, regardless where
the procedure stops.
include=p includes the first p variables listed in the model
statement in every model. Why might this be necessary?
Salary data: stepwise selection, choosing hierarchical model
with smallest Cp during stepwise procedure (which happens to
be at the end!)

proc glmselect;

model y=x1 x2 x3 x1*x1 x2*x2 x3*x3 x1*x2 x1*x3 x2*x3 /

selection=stepwise(select=sl choose=cp sle=0.1 sls=0.15) hier=single; 33 / 40



proc glmselect output

The GLMSELECT Procedure

Selection Method Stepwise

Select Criterion Significance Level

Stop Criterion Significance Level

Choose Criterion C(p)

Entry Significance Level (SLE) 0.1

Stay Significance Level (SLS) 0.15

Effect Hierarchy Enforced Single

Stepwise Selection Summary

Effect Effect Number Number

Step Entered Removed Effects In Parms In CP F Value Pr > F

0 Intercept 1 1 211.6955 0.00 1.0000

------------------------------------------------------------------------------------------------

1 age 2 2 111.4284 13.05 0.0023

2 pol 3 4 31.6296 14.09 0.0004

3 age*age 4 5 19.2714 6.84 0.0213

4 educ 5 6 12.1660 6.01 0.0305

5 educ*educ 6 7 6.2608* 8.47 0.0142

* Optimal Value Of Criterion

Selection stopped because the candidate for entry has SLE > 0.1 and the candidate for removal

has SLS < 0.15.

Stop Details

Candidate Candidate Compare

For Effect Significance Significance

Entry age*educ 0.3056 > 0.1000 (SLE)

Removal age*age 0.0266 < 0.1500 (SLS)
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proc glmselect output

The selected model, based on C(p), is the model at Step 5.

Effects: Intercept age educ age*age educ*educ pol

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value

Model 6 5143.28668 857.21445 38.85

Error 11 242.71332 22.06485

Corrected Total 17 5386.00000

Root MSE 4.69732 Dependent Mean 57.66667

R-Square 0.9549 Adj R-Sq 0.9304

AIC 80.82717 AICC 96.82717

BIC 72.24885 C(p) 6.26081

SBC 67.05977

Parameter Estimates

Standard

Parameter DF Estimate Error t Value

Intercept 1 -66.482220 18.342169 -3.62

age 1 2.787032 0.626151 4.45

educ 1 18.751324 5.739109 3.27

age*age 1 -0.018677 0.007298 -2.56

educ*educ 1 -1.342341 0.461108 -2.91

pol D 1 -9.495127 2.790631 -3.40

pol O 1 -23.472038 2.813063 -8.34

pol R 0 0 . .
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proc glm; class pol;

model salary=age age*age educ educ*educ pol / solution;

-------------------------------------------------------------

Source DF Type III SS Mean Square F Value Pr > F

age 1 437.146692 437.146692 19.81 0.0010

age*age 1 144.511058 144.511058 6.55 0.0266

educ 1 235.546067 235.546067 10.68 0.0075

educ*educ 1 186.991457 186.991457 8.47 0.0142

pol 2 1547.552133 773.776067 35.07 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -66.48222024 B 18.34216851 -3.62 0.0040

age 2.78703226 0.62615068 4.45 0.0010

age*age -0.01867654 0.00729787 -2.56 0.0266

educ 18.75132386 5.73910890 3.27 0.0075

educ*educ -1.34234095 0.46110774 -2.91 0.0142

pol D -9.49512746 B 2.79063098 -3.40 0.0059

pol O -23.47203787 B 2.81306286 -8.34 <.0001

pol R 0.00000000 B . . .

Moral: when a predictor (e.g. education) is not included in proper
functional form, it can be missed if one is looking for important
main effects only.
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Stepwise procedures vs. best subsets

Forwards selection, backwards elimination, and stepwise
procedures are designed for very large numbers of variables.

Best subsets work well when the number of potential variables
is smaller. Say have k predictors. The number of possible

9-variable models is

(
10
9

)
= 10, the number of 8-variable

models is

(
10
8

)
= 45, 120 7-variable, 210 6-variable, 252

5-variable, 210 4-variable, etc.

In proc reg you can find best subsets, but SAS will not weed
out non-hierarchical models.
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Stepwise with lung pressure data, proc glmselect

Implemented as described in your textbook.

* stepwise until all effect sig. at 0.1 and 0.15 levels, stop when cannot enter or remove

variable & choose that model;

proc glmselect;

model y=x1 x2 x3 x1*x1 x2*x2 x3*x3 x1*x2 x1*x3 x2*x3 / selection=stepwise(select=sl stop=sl

sle=0.1 sls=0.15) hier=single;

--------------------------------------------------------------------------------------------------------------------

Stepwise Selection Summary

Effect Effect Number

Step Entered Removed Effects In F Value Pr > F

0 Intercept 1 0.00 1.0000

-------------------------------------------------------------------

1 x2 2 21.54 0.0002

2 x2*x2 3 6.16 0.0246

Selection stopped because the candidate for entry has SLE > 0.1 and the candidate for removal

has SLS < 0.15.

Stop Details

Candidate Candidate Compare

For Effect Significance Significance

Entry x1 0.3805 > 0.1000 (SLE)

Removal x2*x2 0.0246 < 0.1500 (SLS)

This model, x2, x
2
2 has Cp = 3.8, much larger than best model

found using “best subsets.”
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Stepwise with lung pressure data, proc reg

Implemented as described in your textbook, but non-hierarchical.

proc glmselect;

proc reg;

model y=x1 x2 x3 x12 x13 x23 x1sq x2sq x3sq / selection=stepwise sle=0.1 sls=0.15;

--------------------------------------------------------------------------------------------------------------------

The REG Procedure

Stepwise Selection: Step 1

Variable x2 Entered: R-Square = 0.5589 and C(p) = 8.2349

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 72.87601 7.19467 21533 102.60 <.0001

x2 -0.67707 0.14590 4519.89726 21.54 0.0002

------------------------------------------------------------------------------------------------

Stepwise Selection: Step 2

Variable x2sq Entered: R-Square = 0.6814 and C(p) = 3.7784

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 104.09098 14.07022 8812.77920 54.73 <.0001

x2 -2.12876 0.59884 2034.77821 12.64 0.0026

x2sq 0.01327 0.00535 991.41494 6.16 0.0246

------------------------------------------------------------------------------------------------
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Stepwise with lung pressure data, proc reg

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1000 significance level for entry into the model.

Summary of Stepwise Selection

Variable Variable Number Partial Model

Step Entered Removed Label Vars In R-Square R-Square C(p) F Value

1 x2 ejection rate 1 0.5589 0.5589 8.2349 21.54

2 x2sq 2 0.1226 0.6814 3.7784 6.16

Summary of Stepwise Selection

Step Pr > F

1 0.0002

2 0.0246

Both proc glmselect and proc reg do stepwise. Only proc
reg does best subsets. Only proc glmselect does stepwise
hierarchical model building, LASSO and LAR. Choose proc
glmselect for “large p” problems and choose proc reg for
smaller numbers of predictors, e.g. k < 30.
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