Chapter 9 Model Selection and Validation

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

Salary example in proc glm

Model salary (\$1000) as function of age in years, years post-high school education (educ), & political affiliation (pol), pol = D for Democrat, pol = R for Republican, and pol = O for other.

data salarv: input salary age educ pol\$ @0; datalines; 38 25 4 D 45 27 4 R 28 26 4 0 55 39 4 D 74 42 4 R 43 41 4 0 47 25 6 D 55 26 6 R 40 29 6 D 65 40 6 D 89 41 6 R 56 42 6 D 56 32 8 D 65 33 8 R 45 35 9 0 75 39 8 D 95 65 9 R 67 69 10 0 options nocenter: proc glm; class pol; model salary=age educ pol / solution; run; Standard Parameter Estimate Error t Value Pr > |t|Intercept 26.19002631 B 7.89909191 3.32 0.0056 4.57 0.0005 age 0.89834968 0.19677236 1.50394642 1.18414843 1.27 0.2263 educ -1.89 pol D -9.15869409 B 4.84816554 0.0814 pol -5.41

R The model is

pol

0

 $Y_i = \beta_0 + \beta_1 \mathsf{age}_i + \beta_2 \mathsf{educ}_i + \beta_{31} I \{\mathsf{pol}_i = \mathsf{D}\} + \beta_{32} I \{\mathsf{pol}_i = \mathsf{O}\} + \beta_{33} I \{\mathsf{pol}_i = \mathsf{R}\} + \epsilon_i$

2 continuous

-25.69911504 B

0.0000000 B

1 categorical

0.0001

and the coefficient vector is $\beta' = (\beta_0, \beta_1, \beta_2, \beta_{31}, \beta_{32}, \beta_{33}).$ =0

4 75120999

General linear test in SAS

- The contrast statement in SAS PROC GLM lets you test whether one or more linear combinations of regression effects are (simultaneously) zero.
- To test no difference between Democrats and Republicans, $H_0: \beta_{31} = \beta_{33}$ equivalent to $H_0: \beta_{31} - \beta_{33} = 0$, use contrast "Dem=Rep" pol 1 0 -1;. Need to include the "-1" even though SAS sets $\beta_{33} = 0$!
- To test no difference among all political affiliations, use $H_0: \beta_{31} \beta_{32} = 0$ and $H_0: \beta_{32} \beta_{33} = 0$, given by contrast "Dem=Rep=Other" pol 1 -1 0, pol 0 1 -1;.

proc glm; class pol; moc contrast "Dem=Rep" pol : contrast "Dem=Rep=Other"	del salary L O -1; ' pol 1 -1	7=age educ pol / L O, pol O 1 -1;	solution;		
Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
Dem=Rep	1	240.483581	240.483581	3.57	0.0814
Dem=Rep=Other	2	2017.608871	1008.804436	14.97	0.0004

General linear test in SAS

- We can also test quadratic effects and interactions.
- From the initial fit, educ is not needed with age and pol in the model. Let's refit:

proc glm; class pol; model salary=age pol / solution; run; DF Type III SS Mean Square F Value Source Pr > F2648.275862 2648.275862 37.65 <.0001 1 age 1982.208197 991,104098 14.09 0.0004 pol 2 Standard Pr > |t|Parameter Estimate Error t Value Intercept 30.15517241 B 7.41311553 4.07 0.0012 6.14 age 1.03448276 0.16859121 <.0001 -8.63793103 B -1.75 pol D 4,93543380 0.1020 pol 4 84730261 -5.240.0001 0 -25.37931034 B pol R 0.0000000 B .

The Type III SS test H_0 : $\beta_1 = 0$ and H_0 : $\beta_{21} = \beta_{22} = \beta_{23} = 0$ in

 $Y_i = \beta_0 + \beta_1 \mathsf{age}_i + \beta_{21} I\{\mathsf{pol}_i = \mathsf{D}\} + \beta_{22} I\{\mathsf{pol}_i = \mathsf{O}\} + \beta_{23} I\{\mathsf{pol}_i = \mathsf{R}\} + \epsilon_i$

A test of the main effects model versus the quadratic model

proc glm model s contras	; clas alary= t "dro	ss pol; =age pol age*pol op quadratic efi	l age* fects?	age / solution; ?" age∗age 1, ag	e*pol 1 −1	0, age*po	1 1 0 -1;	
Contrast			DF	Contrast SS	Mean	Square	F Value	Pr > F
drop quadratic effects?		c effects?	3	376.8443881	125.6	147960	2.27	0.1369
				Standard				
Paramete	r	Estimate		Error	t Value	Pr > t		
Intercep	t	-22.13053948	В	25.12432158	-0.88	0.3972		
age		3.46694474	В	1.16442934	2.98	0.0126		
pol	D	1.18699006	В	21.44129001	0.06	0.9568		
pol	0	-15.72146564	В	13.51918833	-1.16	0.2695		
pol	R	0.0000000	В					
_ age*pol	D	-0.28943698	В	0.61955938	-0.47	0.6495		
age*pol	0	-0.23843048	В	0.32387727	-0.74	0.4770		
age*pol	R	0.0000000	В					
 age*age		-0.02513595		0.01254539	-2.00	0.0704		

We'll work this out on the board. We can drop the quadratic effects (p=0.137), although there's some indication in the table of regression effects that age_i^2 might be needed.

- Scatterplots show the *marginal* relationship between Y and each of the x_1, \ldots, x_k . They *cannot* show you anything about the *joint* relationship among the Y, x_1, \ldots, x_k .
- If a nonlinear relationship between Y and x_j (j = 1, ..., k)marginally may or may not be present in the *joint* relationship.
- Actually, any strong relationship between Y and x_j marginally doesn't mean that x_j will be needed in the presence of other variables.
- Seeing no marginal relationship between Y and x_j does not mean that x_j is not needed in a model including other predictors.

No relationship?

Here Y vs. x_1 and Y vs. x_2 shows nothing. There seems to be some multicollinearity though.

x_1 important marginally? $Y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.94576	0.03602	26.26	<.0001
x1	1	0.06974	0.06311	1.11	0.2745

 x_2 important marginally? $Y_i = \beta_0 + \beta_2 x_{i2} + \epsilon_i$

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.95180	0.03730	25.52	<.0001
x2	1	0.05603	0.06458	0.87	0.3898

 x_1, x_2 important jointly? $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.08151	0.10876	-0.75	0.4572
x1	1	1.07327	0.11065	9.70	<.0001
x2	1	1.08548	0.11271	9.63	<.0001

Nonlinear relationship?

Marginally, x_1 and x_2 have highly nonlinear relationships with Y. Should we transform?

Let's try fitting a simple main effects model without any transformation.

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.00036626	0.00130	-0.28	0.7791
x1	1	1.00022	0.00059936	1668.80	<.0001
x2	1	1.00009	0.00060998	1639.54	<.0001

both x_1 and x_2 are important, but does the model fit okay?

Model fit is okay

Look at Y_i vs. \hat{Y}_i and R^2 !

Chapter 9 Model variable selection and validation

Book outlines four steps in data analysis

- 1 Data collection and preparation (acquiring and "cleaning").
- 2 Reduction of explanatory variables (for exploratory observational studies). Mass screening for "decent" predictors.
- 3 Model refinement and selection.
- 4 Model validation.

We usually get data after step 1.

9.1 Model building overview

- Book has flowchart for model building process on p. 344.
- *Designed experiments* are typically easy; experimenter *manipulates* treatment variables during experiment (and expects them to be significant); other variables are collected to adjust for.
- With *confirmatory* observational studies, the goal is to determine whether (or how) the response is related to one or more pre-specified explanatory variables. No need to weed them out.
- *Exploratory* observational studies are done when we have little previous knowledge of exactly which predictors are related to the response. Need to "weed out" good from useless predictors.
- We may have a list of *potentially* useful predictors; *variable selection* can help us "screen out" useless ones and build a good, predictive model.

Controlled experiments

- These include clinical trials, laboratory experiments on monkeys and pigs, etc., community-based intervention trials, etc.
- The experimentors control one or more variables that are related to the reponse. Often these variables are "treatment" and "control." Can ascribe causality if populations are the same except for the control variables.
- Sometimes other variables (not experimentally assigned) that may also affect the response are collected too, e.g. gender, weight, blood chemistry levels, viral load, whether other family members smoke, etc.
- When building the model the treatment is always included. Other variables are included as needed to reduce variability and zoom in on the treatment factors. Some of these variables may be useful and some not, so part of the model building process is weeding out "noise" variables.

Confirmatory observational studies

- Used to test a hypothesis built from other studies or a "hunch."
- Variables involved in the hypothesis (amount of fiber in diet) that affect the response (cholesterol) are measured along with other variables that can affect the outcome (age, exercise, gender, race, etc.) – nothing is controlled. Variables involved in the hypothesis are called *primary* variables; the others are called risk factors; epidemiologists like to "adjust" for "risk factors."
- Note that your book discusses Vitamin E and cancer on p. 345. Recall what Stan Young discussed in his seminar a few weeks back?
- Usually all variables are retained in the analysis; they were chosen ahead of time.

- When people are involved, often not possible to conduct controlled experiments.
- Example: maternal smoking affects infant birthweight. One would have to randomly allocate the treatments "smoking" and "non-smoking" to pregnant moms ethical problems.
- Investigators consider *anything* that is easy to measure that might be related to the response. Many variables are considered and models painstakenly built. Often called "data dredging."

- There's a problem here one is sure to find *something* if they look hard enough. Often "signals" are there spuriously, and sometimes *in the wrong direction*.
- The number of variables to consider can be large; there can be high multicollinearity. Keeping too many predictors can make prediction *worse*.
- Your textbook says "The identification of "good"...variables to be included in the...regression model and the determination of appropriate functional and interaction relations...constitute some of the most difficult problems in regression analysis."

- First steps often involve plots:
 - Plots to indicate correct functional form of predictors and/or response.
 - Plots to indicate possible interaction.
 - Exploration of correlation among predictors (maybe).
 - Often a first-order model is a good starting point.
- Once a reasonable set of potential predictors is identified, formal model selection begins.
- If the number of predictors is large, say k ≥ 10, we can use (automated) stepwise procedures to reduce the number of variables (and models) under consideration.

Once we reduce the set of potential predictors to a reasonable number, we can examine all possible models and choose the "best" according to some criterion.

Say we have k predictors x_1, \ldots, x_k and we want to find a good subset of predictors that predict the data well. There are several useful criteria to help choose a subset of predictors.

Adjusted- R^2 , R_a^2

"Regular" R^2 measures how well the model predicts the data that built it. It is possible to have a model with $R^2 = 1$ (predicts the data that built it perfectly), but has *lousy out-of-sample prediction*. The adjusted R^2 , denoted R^2_a provides a "fix" to R^2 to provide a measure of how good the model will predict data not used to build the model. For a candidate model with p-1 predictors

$$R_a^2 = 1 - \frac{n-1}{n-p} \frac{SSE_p}{SSTO} \left(= 1 - \frac{MSE_p}{s_y^2} \right)$$

- Equivalent to choosing the model with the smallest MSE_p.
- If irrelevant variables are added, R_a^2 may decrease unlike "regular" R^2 (R_a^2 can be negative!).
- R_a^2 penalizes model for being too complex.
- Problem: R_a² is greater for a "bigger" model whenever the F-statistic for comparing bigger to smaller is greater than 1. We usually want F-statistics to be a lot bigger than 1 before adding in new predictors ⇒ too liberal.

Choose model with smallest Akaike Information Criterion (AIC). For normal error model,

$$AIC = n\log(SSE_p) - n\log(n) + 2p.$$

- $n \log(SSE_p) n \log(n) = C 2 \log\{\mathcal{L}(\hat{\beta}, \hat{\sigma}^2)\}$ from the normal model where C is a constant; we'll show this on the board.
- 2p is "penalty" term for adding predictors.
- Like R_a^2 , AIC favors models with small SSE, but penalizes models with too many variables p.

Models with smaller Schwarz Bayesian Criterion (SBC) are estimated to predict better. SBC is also known as *Bayesian Information Criterion*:

$$BIC = n \log(SSE_p) - n \log(n) + p \log(n).$$

- BIC is similar to AIC, but for n ≥ 8, the BIC "penalty term" is more severe.
- Chooses model that "best predicts" the observed data according to asymptotic criteria.

Mallow's C_p

Let F be the full model with all k predictors and R be a reduced model with p-1 predictors to be compared to the full model. Mallows C_p is

$$C_p = \frac{SSE(R)}{MSE(F)} - n + 2p.$$

- Measures the bias in the reduced regression model relative full model having all *k* candidate predictors.
- The full model is chosen to provide an unbiased estimate $\hat{\sigma}^2 = MSE(x_1, \dots, x_k)$. Predictors must be in "correct form" and important interactions included.
- If a reduced model is unbiased, $E(\hat{Y}_i) = \mu_i$, then $E(C_p) = p$ (pp. 357–359).
- The full model always has $C_p = k + 1$.
- If C_p ≈ p then the reduced model predicts as well as the full model. If C_p predict *better* than the full model.
- In practice, just choose model with smallest C_p .

 R_a^2 , AIC, BIC, and C_p may given different "best" models, or they may agree. Ultimate goal is to find model that balances:

- A good fit to the data.
- Low bias.
- Parsimony.

All else being equal, the simpler model is often easier to interpret and work with. Christensen (1996) recommends C_p and notes the similarity between C_p and AIC.

- Any regression textbook will caution against not thinking about the data at all and simply using automated procedures.
- Automated procedures cannot assess a good functional form for a predictor, cannot think about which interactions might be important, etc.
- Anyway, automated procedures are widely used and *can* produce good models. They can also produce models that are *substantially inferior* to other models built from the same predictors using scientific input and common sense.

Two methods for "automatically" picking variables

- Two methods are **best subsets** and **stepwise** procedures.
- Best subsets simply finds the models that are best according to some statistic, e.g. smallest C_p of a given size. proc reg does this automatically, but does not enforce hierarchical model building.
- Stepwise procedures add and/or subtract variables one at a time according to prespecified inclusion/exclusion criteria. Useful when you have a very large number of variables (e.g. k > 30). Both proc reg and proc glmselect incorporate stepwise methods.

Best subsets for blood pressure data Problem 9.13

- Increased arterial blood pressure in lungs can lead to heart failure in patients with chronic obstructive pulmonary disease (COPD).
- Determining arterial lung pressure is invasive, difficult, and can hurt patient.
- Radionuclide imaging is noninvasive, less risky way to estimate arterial pressure in lungs.
- A cardiologist measured three potential proxies and the invasive measure on n = 19 COPD patients.
 - x₁ = emptying rate of blood into the pumping chamber of the heart
 - 2 x₂ = ejection rate of blood pumped out of the heart into the lungs
 - 3 $x_3 = a$ blood gas.
 - Y = invasive measure of systolic pulmonary arterial pressure

data lun	g;											
input y :	x1 x2 x3	3 @@; x1	2=x1*x2	; x13=	x1*x3; x	23=x2*x	3; x1so	q=x1*x1	x2sq=	(2*x2;)	3sq=x3*x	3;
label y=	"pulmona	ary arte	erial pr	essure	" x1="em	ptying	rate" 3	2="ejeo	ction ra	ate" x3=	="blood g	gas";
dataline	s;	-	-					-			-	
49.0	45.0	36.0	45.0	55.0	30.0	28.0	40.0	85.0	11.0	16.0	42.0	
32.0	30.0	46.0	40.0	26.0	39.0	76.0	43.0	28.0	42.0	78.0	27.0	
95.0	17.0	24.0	36.0	26.0	63.0	80.0	42.0	74.0	25.0	12.0	52.0	
37.0	32.0	27.0	35.0	31.0	37.0	37.0	55.0	49.0	29.0	34.0	47.0	
38.0	26.0	32.0	28.0	41.0	38.0	45.0	30.0	12.0	38.0	99.0	26.0	
44.0	25.0	38.0	47.0	29.0	27.0	51.0	44.0	40.0	37.0	32.0	54.0	
31.0	34.0	40.0	36.0									
;												
* best s	ubset in	n proc n	eg, sho	w 5 mo	dels wit	h small	.est Cp	out of	all pos	ssible m	nodels;	
proc reg	; model	y=x1 x2	2 x3 x12	2 x13 x	23 x1sq	x2sq x3	sq / se	election	n=cp bes	st=5;		
	Numbe	er in		->	D. C	W		M	-1			
	MOG	lei	00	.p)	K-Square	e vai	lables	in Mode	θT			
		3	-0.05	61	0.7922	x1	x2 x12					
		3	0.67	17	0.7784	- x1	x2 x1sc	9				
		4	1.21	.40	0.8061	x1	x2 x1sc	q x2sq				
		4	1.30	25	0.8044	x1	x3 x23	x1sq				
		4	1.41	.08	0.8023	x1	x13 x23	3 x1sq				
Only	mode	ls V1	Yo Y	1 22	Y1	\mathbf{x}_{2}	. and	4 Y1	\mathbf{x}_{2}	$\frac{2}{x^2}$	are	
Omy	mouc		, , , , , , , , , , , , , , , , , , , ,	172,	γ_1, γ_2	$^{2}, ^{1}$, and	ал <u>і</u> ,	^2, ^]	, -2	arc	
hierar	chica	Ι.										

Forward stepwise regression (pp. 364–365)

We start with k potential predictors x_1, \ldots, x_k . We add and delete predictors one at a time until all predictors are significant at some preset level. Let α_e be the significance level for adding variables, and α_r be significance level for removing them.

Note: We should choose $\alpha_e < \alpha_r$; in book example $\alpha_e = 0.1$ & $\alpha_r = 0.15$.

Forward stepwise regression

- Regress Y on x₁ only, Y on x₂ only, up to Y on x_k only. In each case, look at the p-value for testing the slope is zero. Pick the x variable with the smallest p-value to include in the the model.
- Fit all possible 2-predictor models (in general *j*-predictor models) than include the initially chosen *x*, along with each remaining *x* variable in turn. Pick new *x* variable with smallest p-value for testing slope equal to zero in model that already has first one chosen, as long as p-value < α_e. Maybe nothing is added.
- Remove the x variable with the *largest* p-value as long as p-value > α_r. Maybe nothing is removed.
- Repeat steps (2)-(3) until no x variables can be added or removed.

- Forward selection and backwards elimination are similar procedures; see p. 368. I suggest stepwise of the three.
- proc glmselect implements automated variable selection methods for regression models.
- Does stepwise, backwards, and forwards procedures as well as least angle regression (LAR) and lasso. Flom and Casell (2007) recommend either of these last two overall traditional stepwise approaches & note they both do about the same.
- The syntax is the same as proc glm, and you can include class variables, interactions, etc.

proc glmselect

- The hier=single option builds hierarchical models. To do stepwise as in your textbook cutoffs suggested in your textbook include select=sl, also sle=0.1 is entry cutoff and sls=0.15 is cutoff for staying in the model (used by your book). You can also do model selection using any of AIC, BIC, C_p, R_a² rather than p-value cutoffs.
- proc glmselect will stop when you cannot add or remove any predictors, but the "best" model may have been found in an earlier iteration. Using choose=cp, for example, gives the model with the lowest C_p as the final model, regardless where the procedure stops.
- include=p includes the first p variables listed in the model statement in every model. Why might this be necessary?
- Salary data: stepwise selection, choosing hierarchical model with smallest C_p during stepwise procedure (which happens to be at the end!)

```
proc glmselect;
model y=x1 x2 x3 x1*x1 x2*x2 x3*x3 x1*x2 x1*x3 x2*x3 /
   selection=stepwise(select=s1 choose=cp sle=0.1 sls=0.15) hier=single;
```

proc glmselect output

The GLMSELECT Procedure

Selection Method	Stepwise
Select Criterion	Significance Level
Stop Criterion	Significance Level
Choose Criterion	C(p)
Entry Significance Level (SLE)	0.1
Stay Significance Level (SLS)	0.15
Effect Hierarchy Enforced	Single

Stepwise Selection Summary

Step Entered Removed Effects In Parms In CP F Value 0 Intercept 1 1 211.6955 0.00	
0 Intercept 1 1 211.6955 0.00	Pr > F
	1.0000
1 age 2 2 111.4284 13.05	0.0023
2 pol 3 4 31.6296 14.09	0.0004
3 age*age 4 5 19.2714 6.84	0.0213
4 educ 5 6 12.1660 6.01	0.0305
5 educ*educ 6 7 6.2608* 8.47	0.0142

* Optimal Value Of Criterion

Selection stopped because the candidate for entry has SLE > 0.1 and the candidate for removal has SLS < 0.15.

Stop Details

Candidate		Candidate		Compare	
For	Effect	Significance		Significance	
Entry	age*educ	0.3056	>	0.1000	(SLE)
Removal	age*age	0.0266	<	0.1500	(SLS)

proc glmselect output

The selected model, based on C(p), is the model at Step 5.

Effects: Intercept age educ age*age educ*educ pol

Analysis of Variance

	Sum of	Mean	
DF	Squares	Square	F Value
6	5143.28668	857.21445	38.85
11	242.71332	22.06485	
17	5386.00000		
4.69732	Dependent	Mean 57.	66667
0.9549	Adj R-Sq	0	.9304
80.82717	AICC	96.	82717
72.24885	C(p)	6.	26081
67.05977			
	DF 6 11 17 4.69732 0.9549 80.82717 72.24885 67.05977	Sum of DF Squares 6 5143.28668 11 242.71332 17 5386.00000 4.69732 Dependent 0.9549 Adj R-Sq 80.82717 AICC 72.24885 C(p) 67.05977	Sum of Mean DF Squares Square 6 5143.28668 857.21445 11 242.71332 22.06485 17 5386.00000 5386.00000 4.69732 Dependent Mean 57. 0.9549 Adj R-Sq 0 80.82717 AICC 96. 72.24885 C(p) 6. 67.05977 6.

Parameter Estimates

				Standard	
Parameter	2	DF	Estimate	Error	t Value
Intercept	5	1	-66.482220	18.342169	-3.62
age		1	2.787032	0.626151	4.45
educ		1	18.751324	5.739109	3.27
age*age		1	-0.018677	0.007298	-2.56
educ*educ	2	1	-1.342341	0.461108	-2.91
pol	D	1	-9.495127	2.790631	-3.40
pol	0	1	-23.472038	2.813063	-8.34
pol	R	0	0		

proc glm model s	; clas alary=	ss pol; ≔age age*age edu	ıc	educ*educ pol /	solu	tion;			
Source		 I	 0F	Type III SS	 1	Mean So	uare	F Value	Pr > F
age			1	437.146692		437.14	6692	19.81	0.0010
age*age			1	144.511058		144.51	1058	6.55	0.0266
educ			1	235.546067		235.54	6067	10.68	0.0075
educ*edu	с		1	186.991457		186.99	1457	8.47	0.0142
pol			2	1547.552133		773.77	6067	35.07	<.0001
				Standard					
Paramete	r	Estimate		Error	t	Value	Pr	> t	
Intercep	t	-66.48222024	В	18.34216851		-3.62	C	0.0040	
age		2.78703226		0.62615068		4.45	C	0.0010	
age*age		-0.01867654		0.00729787		-2.56	C	0.0266	
educ		18.75132386		5.73910890		3.27	C	0.0075	
educ*edu	с	-1.34234095		0.46110774		-2.91	C	0.0142	
pol	D	-9.49512746	В	2.79063098		-3.40	C	0.0059	
pol	0	-23.47203787	В	2.81306286		-8.34	<	<.0001	
pol	R	0.0000000	В						

Moral: when a predictor (e.g. education) is not included in proper functional form, it can be missed if one is looking for important main effects only.

Stepwise procedures vs. best subsets

- Forwards selection, backwards elimination, and stepwise procedures are designed for very large numbers of variables.
- Best subsets work well when the number of potential variables is smaller. Say have *k* predictors. The number of possible

9-variable models is $\begin{pmatrix} 10 \\ 9 \end{pmatrix} = 10$, the number of 8-variable

models is $\begin{pmatrix} 10 \\ 8 \end{pmatrix}$ = 45, 120 7-variable, 210 6-variable, 252 5-variable, 210 4-variable, etc.

• In proc reg you can find best subsets, but SAS will not weed out non-hierarchical models.

Stepwise with lung pressure data, proc glmselect

Implemented as described in your textbook.

 \ast stepwise until all effect sig. at 0.1 and 0.15 levels, stop when cannot enter or remove variable & choose that model;

proc glmselect;

model y=x1 x2 x3 x1*x1 x2*x2 x3*x3 x1*x2 x1*x3 x2*x3 / selection=stepwise(select=s1 stop=s1

sle=0.1 sls=0.15) hier=single;

Stepwise Selection Summary

	Effect	Effect	Numl	ber		
Step	Entered	Removed	Effects	In	F Value	Pr > F
Ō	Intercept			1	0.00	1.0000
1	x2			2	21.54	0.0002
2	x2*x2			3	6.16	0.0246

Selection stopped because the candidate for entry has SLE > 0.1 and the candidate for removal has SLS < 0.15.

Stop Details

Candidate		Candidate		Compare	
For	Effect	Significance		Significance	
Entry	x1	0.3805	>	0.1000	(SLE)
Removal	x2*x2	0.0246	<	0.1500	(SLS)

This model, x_2, x_2^2 has $C_p = 3.8$, much larger than best model found using "best subsets."

Stepwise with lung pressure data, proc reg

Implemented as described in your textbook, but non-hierarchical.

proc glmselect; proc reg; model y=x1 x2 x3 x12 x13 x23 x1sq x2sq x3sq / selection=stepwise sle=0.1 sls=0.15; The REG Procedure Stepwise Selection: Step 1 Variable x2 Entered: R-Square = 0.5589 and C(p) = 8.2349 Parameter Standard Variable Estimate Error Type II SS F Value Pr > F Intercept 72.87601 7.19467 21533 102.60 <.0001 -0.67707 0.14590 4519.89726 21.54 0.0002 x2 _____ _____ Stepwise Selection: Step 2 Variable x2sq Entered: R-Square = 0.6814 and C(p) = 3.7784 Parameter Standard Variable Type II SS F Value Pr > F Estimate Error Intercept 104.09098 14.07022 8812.77920 54.73 <.0001 x2 -2.128760.59884 2034.77821 12.64 0.0026 x2sa 0.01327 0.00535 991.41494 6.16 0.0246

Stepwise with lung pressure data, proc reg

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1000 significance level for entry into the model.

Summary of Stepwise Selection

	Variable	Variable		Numbe	r	Partial	Model			
Step	Entered	Removed	Label	Vars	In	R-Square	R-Square	C(p)	F	Value
1	x2		ejection rate	1		0.5589	0.5589	8.2349		21.54
2	x2sq			2		0.1226	0.6814	3.7784		6.16

Summary of Stepwise Selection

```
Step Pr > F
1 0.0002
2 0.0246
```

Both proc glmselect and proc reg do stepwise. Only proc reg does best subsets. Only proc glmselect does stepwise hierarchical model building, LASSO and LAR. Choose proc glmselect for "large p" problems and choose proc reg for smaller numbers of predictors, e.g. k < 30.