
One-sample normal hypothesis Testing,
paired t-test, two-sample normal inference,

normal probability plots

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

1 / 27



Hypothesis testing

Recall the one-sample normal model

Y1, . . . ,Yn
iid∼ N(µ, σ2).

We may perform a t-test to determine whether µ is equal to
some specified value µ0.

The test statistic gives information about whether µ = µ0 is
plausible:

t∗ =
Ȳ − µ0

s/
√

n
.

If µ = µ0 is true, then t∗ ∼ tn−1.
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Hypothesis testing

Rationale: Since ȳ is our best estimate of the unknown µ,
ȳ − µ0 will be small if µ = µ0. But how small is small?

Standardizing the difference ȳ − µ0 by an estimate of
sd(Ȳ ) = σ/

√
n, namely the standard error of Ȳ , se(Ȳ ) = s/

√
n

gives us a known distribution for the test statistic t∗ before we
collect data.

If µ = µ0 is true, then t∗ ∼ tn−1.
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Three types of test

Two sided: H0 : µ = µ0 versus Ha : µ 6= µ0.

One sided, “<”: H0 : µ = µ0 versus Ha : µ < µ0.

One sided, “>”: H0 : µ = µ0 versus Ha : µ > µ0.

If the t∗ we observe is highly unusual (relative to what we might
see for a tn−1 distribution), we may reject H0 and conclude Ha.

Let α be the significance level of the test, the maximum
allowable probability of rejecting H0 when H0 is true.
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Rejection rules

Two sided: If |t∗| > tn−1(1− α/2) then reject H0, otherwise
accept H0.
One sided, Ha : µ < µ0. If t∗ < tn−1(α) then reject H0,
otherwise accept H0.
One sided, Ha : µ > µ0. If t∗ > tn−1(1− α) then reject H0,
otherwise accept H0.
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p-value approach

We can also measure the evidence against H0 using a p-value,
which is the probability of observing a test statistic value as
extreme or more extreme that the test statistic we did observe,
if H0 were true.

A small p-value provides strong evidence against H0.

Rule: p-value < α⇒ reject H0, otherwise accept H0.
p-values are computed according to the alternative hypothesis.
Let T ∼ tn−1; then

Two sided: p = P(|T | > |t∗|).
One sided, Ha : µ < µ0: p = P(T < t∗).
One sided, Ha : µ > µ0: p = P(T > t∗).
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Example

We wish to test whether the true mean high temperature is
greater than 75o using α = 0.01:

H0 : µ = 75 versus Ha : µ > 75.

t∗ =
77.667− 75
8.872/

√
30

= 1.646 < t29(0.99) = 2.462.

What do we conclude?

Note that p = 0.05525 > 0.01.

7 / 27



Connection between CI and two-sided test

An α-level two-sided test rejects H0 : µ = µ0 if and only if µ0
falls outside the (1− α)100% CI about µ.

Example (continued): Recall the 90% CI for Seattle’s high
temperature is (74.91,80.42) degrees

At α = 0.10, would we reject H0 : µ = 73 and conclude
Ha : µ 6= 73?
At α = 0.10, would we reject H0 : µ = 80 and conclude
Ha : µ 6= 80?
At α = 0.05, would we reject H0 : µ = 80 and conclude
Ha : µ 6= 80?
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Paired data

When we have two paired samples (when each observation in
one sample can be naturally paired with an observation in the
other sample), we can use one-sample methods to obtain
inference on the mean difference.

Example: n = 7 pairs of mice were injected with a cancer cell.
Mice within each pair came from the same litter and were
therefore biologically similar. For each pair, one mouse was
given an experimental drug and the other mouse was
untreated. After a time, the mice were sacrificed and the
tumors weighed.
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One-sample inference on differences

Let (Y1j ,Y2j) be the pair of control and treatment mice within
litter j , j = 1, . . . ,7.

The difference in control versus treatment within each litter is

Dj = Y1j − Y2j .

If the differences follow a normal distribution, then we have the
model

Dj = µD + εj , j = 1, . . . ,n, where ε1, . . . , εn
iid∼ N(0, σ2).

Note that µD is the mean difference.

To test whether the control results in a higher mean tumor
weight, form

H0 : µD = 0 versus Ha : µD > 0.
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SAS code & output

Actual control and treatment tumor weights are input (not the
differences).
data mice;
input control treatment @@; * @@ allows us to enter more than two values on each line;
datalines;
1.321 0.841 1.423 0.932 2.682 2.011 0.934 0.762 1.230 0.991 1.670 1.120 3.201 2.312
;
proc ttest h0=0 alpha=0.01 sides=u; * sides=L for Ha: mu_D<0 or sides=2 for two-sided;
paired control*treatment;
run;

Difference: control - treatment

N Mean Std Dev Std Err Minimum Maximum
7 0.4989 0.2447 0.0925 0.1720 0.8890

Mean 95% CL Mean Std Dev 95% CL Std Dev
0.4989 0.3191 Infty 0.2447 0.1577 0.5388

DF t Value Pr > t
6 5.39 0.0008
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The default SAS plots...
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Paired example, continued...

We’ll discuss the histogram and the Q-Q plot shortly...

For this test, the p-value is 0.0008. At α = 0.05, we reject H0
and conclude that the true mean difference is larger than 0.

Restated: the treatment produces a significantly lower mean
tumor weight.

A 95% CI for the true mean difference µD is (0.27,0.73) (re-run
with sides=2). The mean tumor weight for untreated mice is
between 0.27 and 0.73 grams higher than for treated mice.
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Section A.7 Two independent samples

Assume we have two independent (not paired) samples from
two normal populations. Label them 1 and 2. The model is

Yij = µi + εij , where i = 1,2 and j = 1, . . . ,ni .

The “within sample heterogeneity” follows

εij
iid∼ N(0, σ2).

Both populations have the same variance σ2.
The two sample sizes (n1 and n2) may be different.
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Pooled approach

An estimator of the variance σ2 is the “pooled sample variance”

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2

.

Then

t =
(Ȳ1 − Ȳ2)− (µ1 − µ2)√

s2
p

[
1
n1

+ 1
n2

] ∼ tn1+n2−2.

We are interested in the mean difference µ1 − µ2, i.e. the
difference in the population means.

A (1− α)100% CI for µ1 − µ2 is

(Ȳ1 − Ȳ2)± tn1+n2−2(1− α/2)

√
s2

p

[
1
n1

+
1
n2

]
.
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Pooled approach: Hypothesis test

Often we wish to test whether the two populations have the
same mean, i.e. H0 : µ1 = µ2. Of course, this implies
H0 : µ1 − µ2 = 0. The test statistic is

t∗ =
Ȳ1 − Ȳ2√

s2
p

[
1
n1

+ 1
n2

] ,
and is distributed tn1+n2−2 under H0. Let T ∼ tn1+n2−2. The tests
are carried out via:

Ha Rejection rule p-value
µ1 6= µ2 |t∗| > tn1+n2−2(1− α/2) P(|T | > |t∗|)
µ1 < µ2 t∗ < −tn1+n2−2(1− α) P(T < t∗)
µ1 > µ2 t∗ > tn1+n2−2(1− α) P(T > t∗)
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Unequal variances: Satterthwaite approximation

Often, the two populations have quite different variances.
Suppose σ2

1 6= σ2
2. The model is

Yij = µi + εij , εij
ind .∼ N(0, σ2

i )

where i = 1,2 denotes the population and j = 1, . . . ,ni the
measurement within the population.

Use s2
1 and s2

2 to estimate σ2
1 and σ2

2. Define the test statistic

t∗ =
Ȳ1 − Ȳ2√

s2
1

n1
+

s2
2

n2

.
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Unequal variances: Satterthwaite approximation

Under the null H0 : µ1 = µ2, this test statistic is approximately
distributed t∗ ∼ tdf where

df =

(
s2

1
n1

+
s2

2
n2

)2

s4
1

n2
1(n1−1) +

s4
2

n2
2(n2−1)

.

Note that df = n1 + n2 − 2 when n1 = n2 and s1 = s2.

Satterthwaite and pooled variance methods typically give
similar results when s1 ≈ s2.

18 / 27



Testing H0 : σ1 = σ2

We can formally test H0 : σ1 = σ2 using various methods
(e.g. Bartlett’s F-test or Levene’s test), but in practice
graphical methods such as box plots are often used.
SAS automatically provides the “folded F test”

F ∗ =
max{s2

1, s
2
2}

min{s2
1, s

2
2}
.

This test assumes normal data and is sensitive to this
assumption.

19 / 27



SAS example

Example: Data were collected on pollution around a chemical
plant (Rao, p. 137). Two independent samples of river water
were taken, one upstream and one downstream. Pollution level
was measured in ppm. Do the mean pollution levels differ at
α = 0.05?
SAS code
data pollution;
input level location $ @@; * use $ to denote a categorical variable;
datalines;
24.5 up 29.7 up 20.4 up 28.5 up 25.3 up 21.8 up 20.2 up 21.0 up
21.9 up 22.2 up 32.8 down 30.4 down 32.3 down 26.4 down 27.8 down 26.9 down
29.0 down 31.5 down 31.2 down 26.7 down 25.6 down 25.1 down 32.8 down 34.3 down
35.4 down
;

proc ttest h0=0 alpha=0.05 sides=2;
class location; var level;

run;
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SAS output

The TTEST Procedure

Variable: level

location N Mean Std Dev Std Err Minimum Maximum
down 8 29.6375 2.4756 0.8752 26.4000 32.8000
up 10 23.5500 3.3590 1.0622 20.2000 29.7000
Diff (1-2) 6.0875 3.0046 1.4252

location Method Mean 95% CL Mean Std Dev 95% CL Std Dev
down 29.6375 27.5679 31.7071 2.4756 1.6368 5.0384
up 23.5500 21.1471 25.9529 3.3590 2.3104 6.1322
Diff (1-2) Pooled 6.0875 3.0662 9.1088 3.0046 2.2377 4.5728
Diff (1-2) Satterthwaite 6.0875 3.1687 9.0063

Method Variances DF t Value Pr > |t|
Pooled Equal 16 4.27 0.0006
Satterthwaite Unequal 15.929 4.42 0.0004

Equality of Variances

Method Num DF Den DF F Value Pr > F
Folded F 9 7 1.84 0.4332

Note that 1.84 = 3.35902/2.47562.
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The default SAS plots...
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The default SAS plots...
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Assumptions going into t procedures

Note: Recall our t-procedures require that the data come from
normal population(s).

Fortunately, the t procedures are robust: they work
approximately correctly if the population distribution is “close” to
normal.

Also, if our sample sizes are large, we can use the t procedures
(or simply normal-based procedures) even if our data are not
normal because of the central limit theorem.

If the sample size is small, we should perform some check of
normality to ensure t tests and CIs are okay.

Question: Are there any other assumptions going into the
model that can or should be checked or at least thought about?
For example, what if pollution measurements were taken on
consecutive days?
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Boxplots for checking normality

To use t tests and CIs in small samples, approximate
normality should be checked.
Could check with a histogram or boxplot: verify distribution
is approximately symmetric.
Note: For perfectly normal data, the probability of seeing
an outlier on an R or SAS boxplot using defaults is 0.0070.
For a sample size ni = 150, in perfectly normal data we
expect to see 0.007(150) ≈ 1 outlier. Certainly for small
sample sizes, we expect to see none.
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Q-Q plot for checking normality

More precise plot: normal Q-Q plot. Idea: the human eye
is very good at detecting deviations from linearity.
Q-Q plot is ordered data against normal quantiles
zi = Φ−1{i/(n + 1)} for i = 1, . . . ,n.
Idea: zi ≈ E(Z(i)), the expected order statistic under
standard normal assumption.
A plot of y(i) versus zi should be reasonably straight if data
are normal.
However, in small sample sizes there is a lot of variability in
the plots even with perfectly normal data...

Example: R example of Q-Q plots and R code to examine
normal, skewed, heavy-tailed, and light-tailed distributions.
Note both Q-Q plots and numbers of outliers on R boxplot.
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Assumptions for two examples

Mice tumor data: Q-Q plot? Boxplot? Histogram?
River water pollution data: Q-Q plots? Boxplots?
Histograms?

Teaching effectiveness, continued...
proc ttest h0=0 alpha=0.05 sides=2;
class attend; var rating;

run;
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