One-sample normal hypothesis Testing, paired t-test, two-sample normal inference, normal probability plots

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

Recall the one-sample normal model

$$Y_1,\ldots,Y_n \stackrel{iid}{\sim} N(\mu,\sigma^2).$$

We may perform a t-test to determine whether μ is equal to some specified value μ_0 .

The **test statistic** gives information about whether $\mu = \mu_0$ is plausible:

$$t^* = \frac{\bar{Y} - \mu_0}{s/\sqrt{n}}.$$

If $\mu = \mu_0$ is true, then $t^* \sim t_{n-1}$.

Rationale: Since \bar{y} is our best estimate of the unknown μ , $\bar{y} - \mu_0$ will be small if $\mu = \mu_0$. But how small is small?

Standardizing the difference $\bar{y} - \mu_0$ by an estimate of $sd(\bar{Y}) = \sigma/\sqrt{n}$, namely the *standard error* of \bar{Y} , $se(\bar{Y}) = s/\sqrt{n}$ gives us a known distribution for the test statistic t^* before we collect data.

If
$$\mu = \mu_0$$
 is true, then $t^* \sim t_{n-1}$.

Two sided: $H_0: \mu = \mu_0$ versus $H_a: \mu \neq \mu_0$.

One sided, "<": $H_0: \mu = \mu_0$ versus $H_a: \mu < \mu_0$.

One sided, ">": $H_0: \mu = \mu_0$ versus $H_a: \mu > \mu_0$.

If the t^* we observe is highly unusual (relative to what we might see for a t_{n-1} distribution), we may reject H_0 and conclude H_a .

Let α be the significance level of the test, the maximum allowable probability of rejecting H_0 when H_0 is true.

- Two sided: If |t^{*}| > t_{n-1}(1 α/2) then reject H₀, otherwise accept H₀.
- One sided, H_a : μ < μ₀. If t^{*} < t_{n-1}(α) then reject H₀, otherwise accept H₀.
- One sided, H_a: μ > μ₀. If t* > t_{n-1}(1 α) then reject H₀, otherwise accept H₀.

We can also measure the evidence against H_0 using a p-value, which is the probability of observing a test statistic value *as extreme or more extreme* that the test statistic *we did observe*, if H_0 were true.

A small p-value provides strong evidence against H_0 .

Rule: p-value $< \alpha \Rightarrow$ reject H_0 , otherwise accept H_0 . p-values are computed according to the alternative hypothesis. Let $T \sim t_{n-1}$; then

- Two sided: $\rho = P(|T| > |t^*|)$.
- One sided, $H_a : \mu < \mu_0 : p = P(T < t^*)$.
- One sided, $H_a: \mu > \mu_0: p = P(T > t^*).$

We wish to test whether the true mean high temperature is greater than 75^o using $\alpha = 0.01$:

$$H_0: \mu = 75$$
 versus $H_a: \mu > 75.$
 $t^* = rac{77.667 - 75}{8.872/\sqrt{30}} = 1.646 < t_{29}(0.99) = 2.462.$

What do we conclude?

Note that p = 0.05525 > 0.01.

An α -level two-sided test rejects $H_0: \mu = \mu_0$ if and only if μ_0 falls outside the $(1 - \alpha)100\%$ Cl about μ .

Example (continued): Recall the 90% CI for Seattle's high temperature is (74.91, 80.42) degrees

- At α = 0.10, would we reject H_0 : μ = 73 and conclude H_a : $\mu \neq$ 73?
- At $\alpha = 0.10$, would we reject $H_0 : \mu = 80$ and conclude $H_a : \mu \neq 80$?
- At $\alpha = 0.05$, would we reject $H_0 : \mu = 80$ and conclude $H_a : \mu \neq 80$?

When we have two paired samples (when each observation in one sample can be naturally paired with an observation in the other sample), we can use one-sample methods to obtain inference on the **mean difference**.

Example: n = 7 pairs of mice were injected with a cancer cell. Mice within each pair came from the same litter and were therefore biologically similar. For each pair, one mouse was given an experimental drug and the other mouse was untreated. After a time, the mice were sacrificed and the tumors weighed.

One-sample inference on differences

Let (Y_{1j}, Y_{2j}) be the pair of control and treatment mice within litter j, j = 1, ..., 7.

The difference in control versus treatment within each litter is

$$D_j=Y_{1j}-Y_{2j}.$$

If the differences follow a normal distribution, then we have the model

$$D_j = \mu_D + \epsilon_j, \ j = 1, \dots, n, \text{ where } \epsilon_1, \dots, \epsilon_n \stackrel{iid}{\sim} N(0, \sigma^2).$$

Note that μ_D is the mean difference.

To test whether the control results in a higher mean tumor weight, form

$$H_0: \mu_D = 0$$
 versus $H_a: \mu_D > 0$.

Actual control and treatment tumor weights are input (not the differences).

data mice; input control treatment 00; * 00 allows us to enter more than two values on each line; datalines; 1.321 0.841 1.423 0.932 2.682 2.011 0.934 0.762 1.230 0.991 1.670 1.120 3.201 2.312 ; proc ttest h0=0 alpha=0.01 sides=u; * sides=L for Ha: mu_D<0 or sides=2 for two-sided; paired control*treatment; run;

Difference: control - treatment

N 7	Mean 0.4989	St	d Dev .2447		Std E 0.09	Err 925	Mini 0.1	mum 720	Maxir 0.88	num 390
Mea 0.498	n 9	95% CI 0.3191	Mean Infty	7	St (d Dev).2447		95% CL 0.1577	Std De 0.53	ev 388
			DF 6	t	Value 5.39	Pr > 0.000	t)8			

The default SAS plots...

We'll discuss the histogram and the Q-Q plot shortly...

For this test, the p-value is 0.0008. At $\alpha = 0.05$, we reject H_0 and conclude that the true mean difference is larger than 0.

Restated: the treatment produces a significantly lower mean tumor weight.

A 95% CI for the true mean difference μ_D is (0.27, 0.73) (re-run with sides=2). The mean tumor weight for untreated mice is between 0.27 and 0.73 grams higher than for treated mice.

Assume we have two *independent* (not paired) samples from two normal populations. Label them 1 and 2. The model is

$$Y_{ij} = \mu_i + \epsilon_{ij}$$
, where $i = 1, 2$ and $j = 1, \ldots, n_i$.

The "within sample heterogeneity" follows

$$\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2).$$

- Both populations have the same variance σ^2 .
- The two sample sizes $(n_1 \text{ and } n_2)$ may be different.

Pooled approach

An estimator of the variance σ^2 is the "pooled sample variance"

$$s_{
ho}^2 = rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}$$

Then

$$t = \frac{(\bar{Y}_1 - \bar{Y}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}} \sim t_{n_1 + n_2 - 2}.$$

We are interested in the mean difference $\mu_1 - \mu_2$, i.e. the difference in the population means.

A
$$(1 - \alpha)$$
100% CI for $\mu_1 - \mu_2$ is
 $(\bar{Y}_1 - \bar{Y}_2) \pm t_{n_1+n_2-2}(1 - \alpha/2)\sqrt{s_p^2 \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}.$

Pooled approach: Hypothesis test

Often we wish to test whether the two populations have the same mean, i.e. $H_0: \mu_1 = \mu_2$. Of course, this implies $H_0: \mu_1 - \mu_2 = 0$. The test statistic is

$$t^* = rac{ar{Y}_1 - ar{Y}_2}{\sqrt{s_{
ho}^2 \left[rac{1}{n_1} + rac{1}{n_2}
ight]}},$$

and is distributed $t_{n_1+n_2-2}$ under H_0 . Let $T \sim t_{n_1+n_2-2}$. The tests are carried out via:

Ha	Rejection rule	p-value
$\mu_1 eq \mu_2$	$ t^* > t_{n_1+n_2-2}(1-\alpha/2)$	$P(T > t^*)$
$\mu_1 < \mu_2$	$t^* < -t_{n_1+n_2-2}(1-lpha)$	$P(T < t^{*})$
$\mu_1 > \mu_2$	$t^* > t_{n_1+n_2-2}(1-lpha)$	$P(T > t^*)$

Often, the two populations have quite different variances. Suppose $\sigma_1^2 \neq \sigma_2^2$. The model is

$$Y_{ij} = \mu_i + \epsilon_{ij}, \ \epsilon_{ij} \stackrel{ind.}{\sim} N(0, \sigma_i^2)$$

where i = 1, 2 denotes the population and $j = 1, ..., n_i$ the measurement within the population.

Use s_1^2 and s_2^2 to estimate σ_1^2 and σ_2^2 . Define the test statistic

$$t^* = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Under the null H_0 : $\mu_1 = \mu_2$, this test statistic is *approximately* distributed $t^* \sim t_{df}$ where

$$df = rac{\left(rac{s_1^2}{n_1}+rac{s_2^2}{n_2}
ight)^2}{rac{s_1^4}{n_1^2(n_1-1)}+rac{s_2^4}{n_2^2(n_2-1)}}.$$

Note that $df = n_1 + n_2 - 2$ when $n_1 = n_2$ and $s_1 = s_2$.

Satterthwaite and pooled variance methods typically give similar results when $s_1 \approx s_2$.

- We can formally test H₀: σ₁ = σ₂ using various methods (e.g. Bartlett's F-test or Levene's test), but in practice graphical methods such as box plots are often used.
- SAS automatically provides the "folded F test"

$$\mathcal{F}^* = rac{\max\{s_1^2, s_2^2\}}{\min\{s_1^2, s_2^2\}}.$$

This test assumes normal data and is sensitive to this assumption.

Example: Data were collected on pollution around a chemical plant (Rao, p. 137). Two independent samples of river water were taken, one upstream and one downstream. Pollution level was measured in ppm. Do the mean pollution levels differ at $\alpha = 0.05$?

SAS code

```
data pollution;
input level location $ @@; * use $ to denote a categorical variable;
datalines;
24.5 up 29.7 up 20.4 up 28.5 up 25.3 up 21.8 up 20.2 up 21.0 up
21.9 up 22.2 up 32.8 down 30.4 down 32.3 down 26.4 down 27.8 down 26.9 down
35.4 down 31.5 down 31.2 down 26.7 down 25.6 down 25.1 down 32.8 down 34.3 down
35.4 down
;
proc ttest h0=0 alpha=0.05 sides=2;
class location; var level;
run;
```

The TTEST Procedure

Variable: level

location	N	Mean	Std De	ev Std	Err M	linimum	Maximum	
down	8	29.6375	2.475	6 0.8	752 2	6.4000	32.8000	
up	10	23.5500	3.359	1.0	622 2	0.2000	29.7000	
Diff (1-2)		6.0875	3.004	6 1.4	252			
location	Method		Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
down			29.6375	27.5679	31.7071	2.4756	1.6368	5.0384
up			23.5500	21.1471	25.9529	3.3590	2.3104	6.1322
Diff (1-2)	Pooled		6.0875	3.0662	9.1088	3.0046	2.2377	4.5728
Diff (1-2)	Sattert	hwaite	6.0875	3.1687	9.0063			
Method	Vari	ances	DF	t Value	Pr > t			
Pooled	Equa	Equal		4.27	0.0006			
Satterthwait	e Uneq	ual	15.929	4.42	0.0004			
	Equalit	y of Var:	iances					
Method	Num DF	Den DF	F Value	Pr > F				
Folded F	9	7	1.84	0.4332				

Note that $1.84 = 3.3590^2/2.4756^2$.

The default SAS plots...

The default SAS plots...

Assumptions going into t procedures

Note: Recall our t-procedures require that the data come from normal population(s).

Fortunately, the t procedures are **robust**: they work approximately correctly if the population distribution is "close" to normal.

Also, if our sample sizes are large, we can use the t procedures (or simply normal-based procedures) even if our data are not normal because of the central limit theorem.

If the sample size is small, we should perform some check of normality to ensure t tests and CIs are okay.

Question: Are there any other assumptions going into the model that can or should be checked or at least thought about? For example, what if pollution measurements were taken on consecutive days?

- To use t tests and CIs in small samples, approximate normality should be checked.
- Could check with a histogram or boxplot: verify distribution is *approximately* symmetric.
- Note: For perfectly normal data, the probability of seeing an outlier on an R or SAS boxplot using defaults is 0.0070. For a sample size $n_i = 150$, in perfectly normal data we expect to see $0.007(150) \approx 1$ outlier. Certainly for small sample sizes, we expect to see none.

Q-Q plot for checking normality

- More precise plot: normal Q-Q plot. Idea: the human eye is very good at detecting deviations from linearity.
- Q-Q plot is ordered data against normal quantiles $z_i = \Phi^{-1}\{i/(n+1)\}$ for i = 1, ..., n.
- Idea: z_i ≈ E(Z_(i)), the expected order statistic under standard normal assumption.
- A plot of *y*_(*i*) versus *z_i* should be reasonably straight *if data are normal*.
- However, in small sample sizes there is a lot of variability in the plots even with perfectly normal data...

Example: R example of Q-Q plots and R code to examine normal, skewed, heavy-tailed, and light-tailed distributions. Note both Q-Q plots and numbers of outliers on R boxplot.

- Mice tumor data: Q-Q plot? Boxplot? Histogram?
- River water pollution data: Q-Q plots? Boxplots? Histograms?
- Teaching effectiveness, continued...

```
proc ttest h0=0 alpha=0.05 sides=2;
  class attend; var rating;
run;
```