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Functional versus stochastic relations

Model: a mathematical approximation of the relationship among
real quantities (equation & assumptions about terms).

We have seen several models for an outcome variable from
either one or two populations.

Now we’ll consider models that relate an outcome to one or
more continuous predictors.

Functional relationships are perfect. Realizations (Xi ,Yi )
solve the relation Y = f (X ).

A statistical relationship is not perfect. There is a trend
plus error. Signal plus noise.
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Section 1.1: relationships between variables

A functional relationship between two variables is
deterministic, e.g. Y = cos(2.1x) + 4.7. Although often an
approximation to reality (e.g. the solution to a differential
equation under simplifying assumptions), the relation itself is
“perfect.” (e.g. page 3)

A statistical or stochastic relationship introduces some
“error” in seeing Y , typically a functional relationship plus
noise. (e.g. Figures 1.1, 1.2, and 1.3; pp. 4–5).

Statistical relationship: not a perfect line or curve, but a general
tendency plus slop.
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Whale Selenium

Selenium protects marine animals against mercury poisoning.

n = 20 Beluga whales were sampled during a traditional
Eskimo hunt; tooth Selenium (Se) and liver Se were measured.

Would be useful to be able to use tooth Selenium as a proxy
for liver Selenium (easier to get).

Same idea with “biomarkers” in biostatistics.

data whale;

input liver tooth @@;

label liver="Liver Se (mcg/g)"; label tooth="Tooth Se (ng/g)";

datalines;

6.23 140.16 6.79 133.32 7.92 135.34 8.02 127.82 9.34 108.67

10.00 146.22 10.57 131.18 11.04 145.51 12.36 163.24 14.53 136.55

15.28 112.63 18.68 245.07 22.08 140.48 27.55 177.93 32.83 160.73

36.04 227.60 37.74 177.69 40.00 174.23 41.23 206.30 45.47 141.31

;

proc sgscatter; plot liver*tooth / reg; * or pbspline or nothing;

4 / 24



Whale Selenium

Must decide what is the proper functional form for the trend in
this relationship, e.g. linear, curved, piecewise continuous, cosine?
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Whale Selenium

Is a line “correct?”
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Whale Selenium

How about a curve?
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Whale Selenium

Taking log of both variables.
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Section 1.3: Simple linear regression model

For a sample of n pairs {(xi ,Yi )}ni=1, let

Yi = β0 + β1xi + εi , i = 1, . . . , n,

where

Y1, . . . ,Yn are realizations of the response variable,

x1, . . . , xn are the associated predictor variables,

β0 is the intercept of the regression line,

β1 is the slope of the regression line, and

ε1, . . . , εn are unobserved, uncorrelated random errors.

This model assumes that x and Y are linearly related, i.e. the
mean of Y changes linearly with x .
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Assumptions about the random errors

We assume that E (εi ) = 0, var(εi ) = σ2, and corr(εi , εj) = 0 for
i 6= j : mean zero, constant variance, uncorrelated.

β0 + β1xi is the deterministic part of the model. It is fixed but
unknown.

εi represents the random part of the model.

The goal of statistics is often to separate signal from noise; which
is which here?
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Mean and variance of each Yi

Note that

E (Yi ) = E (β0 + β1xi + εi ) = β0 + β1xi + E (εi ) = β0 + β1xi ,

and similarly

var(Yi ) = var(β0 + β1xi + εi ) = var(εi ) = σ2.

Also, corr(Yi ,Yj) = 0 for i 6= j .

These use results from A.3.
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Example: Pages 10–11

Consultant studies relationship between number of bids
requested by construction contractors for lighting equipment
over a week xi (i denotes which week) and the time required
to prepare the bids Yi . Suppose we know

Yi = 9.5 + 2.1xi + εi .

If we see (x3,Y3) = (45, 108) then
ε3 = 108− [9.5 + 2.1(45)] = 4. See Fig. 1.6.
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Example: Pages 10–11

The mean time given x is E (Y ) = 9.5 + 2.1x . When x = 45,
our expected y-value is 104, but we will actually observe a
value somewhere around 104.

What does 9.5 represent here? Is it sensible/interpretable?

How is 2.1 interpreted here?

In general, β1 represents how the mean response changes
when x is increased one unit.
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Simple linear regression using matrices

Note the simple linear regression model can be written in matrix
terms as 

Y1

Y2

...
Yn

 =


1 x1
1 x2
...

...
1 xn


[
β0
β1

]
+


ε1
ε2
...
εn

 ,
or equivalently

Y = Xβ + ε,

where

Y =


Y1

Y2

...
Yn

 ,X =


1 x1
1 x2
...

...
1 xn

 ,β =

[
β0
β1

]
, ε =


ε1
ε2
...
εn

 .
This will be useful later on.
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Section 1.6: Estimation of (β0, β1)

β0 and β1 are unknown parameters to be estimated from the
data: (x1,Y1), (x2,Y2), . . . , (xn,Yn).

They completely determine the unknown mean at each value
of x :

E (Y ) = β0 + β1x .

Since we expect the various Yi to be both above and below
β0 + β1xi roughly the same amount (E (εi ) = 0), a
good-fitting line b0 + b1x will go through the “heart” of the
data points in a scatterplot.

The method of least-squares formalizes this idea by
minimizing the sum of the squared deviations of the observed
yi from the line b0 + b1xi .
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Least squares method for estimating (β0, β1)

The sum of squared deviations about the line is

Q(β0, β1) =
n∑

i=1

[Yi − (β0 + β1xi )]2 .

Least squares minimizes Q(β0, β1) over all (β0, β1).
Calculus shows that the least squares estimators are

b1 =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2

b0 = Ȳ − b1x̄

Proof:

∂Q

∂β1
=

n∑
i=1

2(Yi − β0 − β1xi )(−xi ) = −2

[
n∑

i=1

xiYi − β0

n∑
i=1

xi − β1

n∑
i=1

x2i

]
,

∂Q

∂β0
=

n∑
i=1

2(Yi − β0 − β1xi )(−1) = −2

[
n∑

i=1

Yi − nβ0 − β1

n∑
i=1

xi

]
.

16 / 24



Two equations in two unknowns

Setting these equal to zero, and dropping indexes on the
summations, we have{ ∑

xiYi = b0
∑

xi + b1
∑

x2i∑
Yi = nb0 + b1

∑
xi

}
⇐ “normal” equations

Multiply the first by n and multiply the second by
∑

xi and
subtract yielding

n
∑

xiYi −
∑

xi
∑

Yi = b1

[
n
∑

x2i −
(∑

xi

)2]
.

Solving for b1 we get

b1 =
n
∑

xiYi −
∑

xi
∑

Yi

n
∑

x2i − (
∑

xi )
2

=

∑
xiYi − nȲ x̄∑
x2i − nx̄2

.
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Not quite as nice as (1.10) p. 17)

The second normal equation immediately gives

b0 = Ȳ − b1x̄ .

Our solution for b1 is correct but not as aesthetically pleasing as
the purported solution

b1 =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
.

Show ∑
(xi − x̄)(Yi − Ȳ ) =

∑
xiYi − nȲ x̄∑

(xi − x̄)2 =
∑

x2i − nx̄2
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Properties of least squares estimators

The line Ŷ = b0 + b1x is called the least squares estimated
regression line. Why are the least squares estimates (b0, b1)
“good?”

They are unbiased: E (b0) = β0 and E (b1) = β1.

Among all linear unbiased estimators, they have the smallest
variance. They are best linear unbiased estimators, BLUEs.

We will show the first property next. The second property is
formally called the “Gauss-Markov” theorem (1.11) and is proved
in linear models (page 18).
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2.1 and 2.2: Unbiasedness

b0 and b1 are unbiased (Section 2.1, p. 42) Recall that
least-squares estimators (b0, b1) are given by:

b1 =
n
∑

xiYi −
∑

xi
∑

Yi

n
∑

x2i − (
∑

xi )
2

=

∑
xiYi − nȲ x̄∑
x2i − nx̄2

,

and
b0 = Ȳ − b1x̄ .

Note that the numerator of b1 can be written∑
xiYi − nȲ x̄ =

∑
xiYi − x̄

∑
Yi =

∑
(xi − x̄)Yi .
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Keep going...

Then the expectation of b1’s numerator is

E
{∑

(xi − x̄)Yi

}
=

∑
(xi − x̄)E (Yi )

=
∑

(xi − x̄)(β0 + β1xi )

= β0
∑

xi − nx̄β0 + β1
∑

x2i − nx̄2β1

= β1

(∑
x2i − nx̄2

)
Finally,

E (b1) =
E {
∑

(xi − x̄)Yi}∑
x2i − nx̄2

=
β1
(∑

x2i − nx̄2
)∑

x2i − nx̄2

= β1.
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E (b0) = β0

Also,

E (b0) = E (Ȳ − b1x̄)

=
1

n

∑
E (Yi )− E (b1)x̄

=
1

n

∑
[β0 + β1xi ]− β1x̄

=
1

n
[nβ0 + nβ1x̄ ]− β1x̄

= β0.

As promised, b1 is unbiased for β1 and b0 is unbiased for β0.
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Whale Selenium, SAS code

proc reg and proc glm fit regression models.

Both include a model statement that tells SAS what the
explanatory variable(s) are (on the right of = separated by
spaces) and the response (on the left).

data whale;

input liver tooth @@;

label liver="Liver Se (mcg/g)"; label tooth="Tooth Se (ng/g)";

datalines;

6.23 140.16 6.79 133.32 7.92 135.34 8.02 127.82 9.34 108.67

10.00 146.22 10.57 131.18 11.04 145.51 12.36 163.24 14.53 136.55

15.28 112.63 18.68 245.07 22.08 140.48 27.55 177.93 32.83 160.73

36.04 227.60 37.74 177.69 40.00 174.23 41.23 206.30 45.47 141.31

;

proc reg;

model liver=tooth;
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Whale Selenium, SAS output

The REG Procedure

Model: MODEL1

Dependent Variable: liver Liver Se (mcg/g)

Number of Observations Read 20

Number of Observations Used 20

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 992.10974 992.10974 7.31 0.0146

Error 18 2444.58376 135.81021

Corrected Total 19 3436.69350

Root MSE 11.65376 R-Square 0.2887

Dependent Mean 20.68500 Adj R-Sq 0.2492

Coeff Var 56.33920

Parameter Estimates

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 -10.69641 11.89954 -0.90 0.3806

tooth Tooth Se (ng/g) 1 0.20039 0.07414 2.70 0.0146

From this, b0 = −10.69, b1 = 0.2004, and σ̂ = 11.65.
Interpretation of each?
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