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2.7 Analysis of variance approach to regression (pp. 63–72)

If x is useless, i.e. β1 = 0, then E (Yi ) = β0. In this case β0 is
estimated by Ȳ . The ith deviation about this grand mean can be
written:

deviation about grand mean︷ ︸︸ ︷
Yi − Ȳ =

explained by model︷ ︸︸ ︷
Ŷi − Ȳ +

slop left over︷ ︸︸ ︷
Yi − Ŷi

Our regression uses line explains how Y varies with x . We are
interested in how much variability in the Y1, . . . ,Yn is soaked up
by the regression model.
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Partitioning the SSTO

Two sources of variability (model & pure error) go into the total
sum of squares (SSTO):

SSTO =
n∑

i=1

(Yi − Ȳ )2 = (n − 1)S2
Y .

SSTO is a measure of the total (sample) variation of Y ignoring x .
The sum of squares explained by the regression line is given by

SSR =
n∑

i=1

(Ŷi − Ȳ )2.

The sum of squared errors measures how much Y varies around
the regression line

SSE =
n∑

i=1

(Yi − Ŷi )
2.

It happily turns out that

SSR + SSE = SSTO.
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Analysis of variance (ANOVA) table

Restated: The variation in the data (SSTO) can be divided into
two parts: the part explained by the model (SSR), and the slop
that’s left over, i.e. unexplained variability (SSE).
Associated with each sum of squares are their degrees of freedom
(df) and mean squares, forming a nice table:

Source SS df MS E(MS)

Regression SSR=
∑n

i=1(Ŷi − Ȳ )2 1 SSR
1

σ2 + β2
1

∑n
i=1(xi − x̄)2

Error SSE=
∑n

i=1(Yi − Ŷ )2 n − 2 SSE
n−2

σ2

Total SSTO=
∑n

i=1(Yi − Ȳ )2 n − 1
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Another test of H0 : β1 = 0

Note: E (MSR) > E (MSE )⇔ β1 6= 0. Loosely, we expect
MSR to be larger than MSE when β1 6= 0.

So testing whether the simple linear regression model explains
a significant amount of the variation in Y is equivalent to
testing H0 : β1 = 0 versus Ha : β1 6= 0.

Consider the ratio MSR/MSE . If H0 : β1 = 0 is true, then
this should be near one. In fact

F ∗ =
MSR

MSE
∼ F1,n−2 when H0 : β1 = 0 is true.

So E (F ∗) = (n − 2)/(n − 4) which goes to one as n→∞
(when β1 = 0).
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F-test in ANOVA table

This leads to an F-test of H0 : β1 = 0 versus Ha : β1 6= 0 using
F ∗ = MSR/MSE :
If F ∗ > F1,n−2(1− α) then reject H0 : β1 = 0 at significance level
α.
Note: F ∗ = (t∗)2 and so the F-test is completely equivalent to the
Wald t-test based on t∗ = b1/se(b1) for H0 : β1.

Toluca data:

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 252378 252378 105.88 <.0001

Error 23 54825 2383.71562

Corrected Total 24 307203
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2.8 General linear test (pp. 72–73)

Note that if H0 : β1 = 0 holds our reduced model is

Yi = β0 + εi .

It can be show that the least-squares estimate of β0 in this reduced
model is β̂0 = Ȳ .
Thus SSE for the reduced model is

SSE (R) =
n∑

i=1

(Yi − Ȳ )2,

which is the SSTO from the full model.
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Form of test statistic and F -distribution

Note that the SSE(R) can never be less than the SSE(F), the sum
of squared errors from the full model. Including a predictor can
never explain less variation in Y , only as much or more. So...

SSE (R) ≥ SSE (F ).

If SSE(R) is only a little more than SSE(F), the predictor is not
helping much (and so the reduced model may be adequate).
We can generally test this with an F-test:

F ∗ =

[
SSE(R)−SSE(F )

dfR−dfF

]
[
SSE(F )

dfF

] ,

and reject H0 : reduced model holds if F ∗ > FdfR−dfF ,dfF (1− α).
This idea/test will be used often in complex regression models with
multiple predictors. “Full model / reduced model ”
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2.9 R2 and r (pp. 74–77)

The coefficient of determination is

R2 =
SSR

SSTO
= 1− SSE

SSTO
,

the proportion of total sample variation in Y that is explained by
its linear relationship with x . Note:

0 ≤ R2 ≤ 1.

R2 = 1⇒ data perfectly linear.

R2 = 0⇒ regression line horizontal (b1 = 0).

The closer R2 is to one, the greater the linear relationship between
x and Y .
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R2 for different data sets
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Sample correlation r

Note: Let

r = corr(x,Y) =

∑n
i=1(xi − x̄)(Yi − Ȳ )√∑n

i=1(xi − x̄)2
∑n

i=1(Yi − Ȳ )2

be the sample correlation between x and Y . Then R2 = r 2. So√
R =

√
SSR/SSTO is equal to |r |.

Note: b1 > 0⇔ r > 0 and b1 < 0⇔ r < 0. So r =
√

R2

sign(b1).
As usual:

r near 0 ⇒ little linear association between x and Y

r near 1 ⇒ strong positive, linear association between x and
Y

r near −1 ⇒ strong negative, linear association between x
and Y
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Cautions about R2 and r

R2 could be close to one, but the E (Yi ) may not lay on a line.
(Why? Which plot?)

R2 may not be close to one, but a line is best for E (Yi )
(Why? Which plot?)

R2 could be essentially zero, but x and Y could be highly
related. (Why? Which plot?)

Toluca data:

Root MSE 48.82331 R-Square 0.8215

Dependent Mean 312.28000 Adj R-Sq 0.8138

Coeff Var 15.63447
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Correlation models

In the regression model Yi = β0 + β1xi + εi

The x values are assumed to be known constants, and

We generally want to predict Y from x .

If we simply have two continuous variables X and Y without
neither being a natural response/predictor, a correlation model can
be used.
Example: For the Toluca data, say we are interested in simply
determining whether lot size and work hours are linearly related.
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2.11 Bivariate normal correlation (pp. 78–87)

If appropriate, we could assume that X and Y have a
bivariate normal normal distribution with parameters µx , µy ,
σx , σy , and ρ.

Then [
Xi

Yi

]
∼ N2

([
µx
µy

]
,

[
σ2
x σxσyρ

σxσyρ σ2
y

])
.

Investigation of linear association between X and Y is done
through inferences about ρ = corr(Xi ,Yi ).

A point estimator of ρ is r as defined a few slides back, the
sample correlation.

r is the MLE under normality, but also an estimator in general
(not assuming normality).
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Test H0 : ρ = 0 and CI for ρ

Testing H0 : ρ = 0 is equivalent to testing H0 : β1 = 0 in the
regression of Y on x .
A large-sample CI for ρ uses Fishers z-transformation:

z ′ = 0.5 log

(
1 + r

1− r

)
.

A large sample (1− α)100% CI for log
(

1+ρ
1−ρ

)
is

z ′ ± z(1− α/2)
√

1/(n − 3).

Then back-transform endpoints to get a CI for ρ.
Here, z(1− α/2) = Φ−1(1− α/2).
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Spearman rank estimate (pp 87–89)

The Spearman rank correlation coefficient replaces the X values
with their ranks, replaces the Y values with their ranks, then
carries out a (standard Pearson, described in last slide) correlation
analysis on the ranks.

The Spearman coefficient is robust to outlying observations. It is
also invariant to monotonic transformations in either X or Y .
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SAS code and output, Toluca

proc corr fisher pearson spearman; var size hours; run;

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum Label

size 25 70.00000 28.72281 70.00000 20.00000 120.00000 Lot Size (parts/lot)

hours 25 312.28000 113.13764 342.00000 113.00000 546.00000 Work Hours

Pearson Correlation Coefficients, N = 25

Prob > |r| under H0: Rho=0

size hours

size 1.00000 0.90638

Lot Size (parts/lot) <.0001

hours 0.90638 1.00000

Work Hours <.0001

Spearman Correlation Coefficients, N = 25

Prob > |r| under H0: Rho=0

size hours

size 1.00000 0.90235

Lot Size (parts/lot) <.0001

hours 0.90235 1.00000

Work Hours <.0001
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SAS code and output, Toluca

Pearson Correlation Statistics (Fisher’s z Transformation)

With Sample p Value for

Variable Variable N Correlation Fisher’s z 95% Confidence Limits H0:Rho=0

size hours 25 0.90638 1.50689 0.789513 0.956737 <.0001

Spearman Correlation Statistics (Fisher’s z Transformation)

With Sample p Value for

Variable Variable N Correlation Fisher’s z 95% Confidence Limits H0:Rho=0

size hours 25 0.90235 1.48475 0.781061 0.954830 <.0001
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Pearson and Spearman coefficients...

Pearson (P) versus Spearman (S). Last plot takes log of each Y in
2nd to last plot. What happens to the Spearman correlation?
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Cautions about regression (pp. 77–78)

When predicting future values, the conditions affecting Y and
x should remain similar for the prediction to be trustworthy.

Beware of extrapolation: predicting Yh for xh far outside the
range of x in the data. The relationship may not hold outside
of the observed x-values.

Concluding that x and Y are linearly related (that β1 6= 0)
does not imply a cause and effect relationship between x and
Y .

Beware of making multiple predictions or inferences
simultaneously unless using an appropriate procedure (e.g.
Scheffe’s method). One needs to consider both the individual
Type I error and the “family error rate.”
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More cautions...

The least squares estimates are not unbiased if x is measured
with error – in fact coefficients are biased towards zero.
Slightly more advanced techniques are needed (see Section
4.2, p. 172).

We have not discussed model checking and diagnostics. These
will come next when we start adding more predictors to the
model. For simple linear regression, in most cases a scatterplot
tells us all we need to know about (i) linear mean and (ii)
homoscedastic (constant variance) errors. (iii) A QQ plot to
assess normality can be examined for the residuals e1, . . . , en.
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