Chapter 6 Multiple Regression

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

We now add more predictors, linearly, to the model. For example let's add one more to the simple linear regression model:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i,$$

with the usual $E(\epsilon_i) = 0$. For any Y in this population with predictors (x_1, x_2) we have

$$\mu(x_1, x_2) = E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2.$$

The triple $(x_1, x_2, \mu(x_1, x_2)) = (x_1, x_2, \beta_0 + \beta_1 x_1 + \beta_2 x_2)$ describes a plane in \mathbb{R}^3 (p. 215).

Multiple regression models

Generally, for k = p - 1 predictors x_1, \ldots, x_k our model is

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i, \qquad (6.7)$$

with mean

$$E(Y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}.$$
 (6.8)

- β₀ is mean response when all predictors equal zero (if this makes sense).
- β_j is the change in mean response when x_j is increased by one unit but the remaining predictors are held constant.
- We will assume normal errors:

$$\epsilon_1,\ldots,\epsilon_n \stackrel{iid}{\sim} N(0,\sigma^2).$$

Dwayne Portrait Studio data (Section 6.9)

Dwayne Portrait Studio is doing a sales analysis based on data from 21 cities.

- Y = sales (thousands of dollars) for a city
- x_1 = number of people 16 years or younger (thousands)
- x_2 = per capita disposable income (thousands of dollars) Assume the linear model is appropriate. One way to check marginal relationships is through a scatterplot matrix. However, these are not infallible.

For these data, is β_0 interpretable?

 β_2 is the change in the mean response for a thousand-dollar increase in disposable income, holding "number of people under 16 years old" constant.

SAS code

```
data studio:
input people16 income sales @0;
 label people16='Number 16 and under (thousands)'
      income ='Per capita disposable income ($1000)'
      sales ='Sales ($1000$)';
datalines:
 68.5 16.7 174.4 45.2 16.8 164.4 91.3 18.2 244.2 47.8 16.3 154.6
 46.9 17.3 181.6 66.1 18.2 207.5 49.5 15.9 152.8 52.0 17.2 163.2
 48.9 16.6 145.4 38.4 16.0 137.2 87.9 18.3 241.9 72.8 17.1 191.1
 88.4 17.4 232.0 42.9 15.8 145.3 52.5 17.8 161.1 85.7 18.4 209.7
 41.3 16.5 146.4 51.7 16.3 144.0 89.6 18.1 232.6 82.7 19.1 224.1
 52.3 16.0 166.5
proc sgscatter; matrix people16 income sales / diagonal=(histogram kernel); run;
options nocenter:
proc reg data=studio;
model sales=people16 income / clb; * clb gives 95% CI for betas;
                                 * alpha=0.9 for 90% CI. etc.:
run:
```

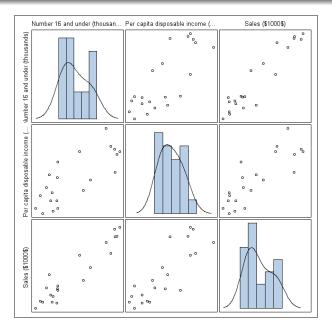
The REG Procedure

Analysis of Variance

		Sum of	Mean			
Source	DF	Squares	Square	F Value	Pr > 1	F
Model	2	24015	12008	99.10	<.000	1
Error	18	2180.92741	121.16263			
Corrected Total	20	26196				
Root MSE	11.00739	R-Square	0.9167			
Dependent Mean	181.90476	Adj R-Sq	0.9075			
Coeff Var	6.05118					
	Pa	arameter Estim	ates			
		Parame	ter Standard			
Variable Label		DF Estima	te Error	t Value P	r > t	95% Confidence Limits
Intercept Interce	pt	1 -68.857	07 60.01695	-1.15	0.2663	-194.94801 57.23387

Intercept	Intercept	1	-68.85707	60.01695	-1.15	0.2663	-194.94801	57.23387
people16	Number 16 and	1	1.45456	0.21178	6.87	<.0001	1.00962	1.89950
	under (thousands)							
income	Per capita disposable	1	9.36550	4.06396	2.30	0.0333	0.82744	17.90356
	income (\$1000)							

Scatterplot matrix



Qualitative predictors

Example: Dichotomous predictor

- Y = length of hospital stay
- x_1 = gender of patient ($x_1 = 0$ male, $x_1 = 1$ female)
- x_2 = severity of disease on 100 point scale

$$E(Y) = \left\{ \begin{array}{cc} \beta_0 + \beta_2 x_2 & \text{males} \\ \beta_0 + \beta_1 + \beta_2 x_2 & \text{females} \end{array} \right\}$$

Response functions are two parallel lines, shifted by β_1 units...so-called "ANCOVA" model.

Polynomial regression

Often appropriate for curvilinear relationships between response and predictor.

Example:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \epsilon.$$

Letting $x_2 = x_1^2$ this is in the form of the general linear model.

Transformed response Example:

$$\log Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon.$$

Let $Y^* = \log(Y)$ and get general linear model.

Interaction effects Example:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon.$$

Let $x_3 = x_1 x_2$ and get general linear model.

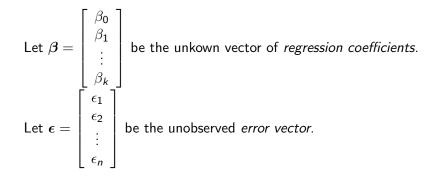
Key: All of these models are *linear in the coefficients*, the β_j terms. An example of a model that is *not* in general linear model form is exponential growth:

$$Y = \beta_0 \exp(\beta_1 x) + \epsilon.$$

6.2 General linear model in matrix terms

Let $\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$ be the response vector. Let $\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}$ be the design matrix containing the predictor variables. The first column is a place-holder for the intercept term. What does each column represent? What does each row represent?

General linear model in matrix terms



The general linear model is written in matrix terms as

$$\underbrace{\left[\begin{array}{c}Y_1\\Y_2\\\vdots\\Y_n\end{array}\right]}_{n\times 1} = \underbrace{\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1k}\\1 & x_{21} & x_{22} & \cdots & x_{2k}\\\vdots & \vdots & \vdots & \ddots & \vdots\\1 & x_{n1} & x_{n2} & \cdots & x_{nk}\end{array}\right]}_{n\times p} \underbrace{\left[\begin{array}{c}\beta_0\\\beta_1\\\vdots\\\beta_k\end{array}\right]}_{p\times 1} + \underbrace{\left[\begin{array}{c}\epsilon_1\\\epsilon_2\\\vdots\\\epsilon_n\end{array}\right]}_{n\times 1},$$

where p = k + 1, or succinctly as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{eta} + \boldsymbol{\epsilon}.$$

Minimal assumptions about the random error vector ϵ are

$$E(\epsilon) = \mathbf{0}$$
 and $\operatorname{cov}(\epsilon) = \mathbf{I}_n \sigma^2$,

where I_n is the $n \times n$ identity matrix (zero except for 1's along the diagonal).

In general, we will go farther and assume

 $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \mathbf{I}_n \sigma^2).$

This allows use to construct t and F tests, obtain confidence intervals, etc.

Writing the model like this saves a *lot* of time and space as we go along.

6.3 Fitting the model

Estimating $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)'$

Recall least-squares method: minimize

$$Q(\boldsymbol{\beta}) = \sum_{i=1}^{n} [Y_i - (\beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik})]^2,$$

as a function of β . Vector calculus can show that the least-squares estimates are

$$\mathbf{b} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y},$$

typically found using a computer package. **Note**: there is a typo in the book (equation (6.25) p. 223).

The fitted values are in the vector

$$\hat{\mathbf{Y}} = \begin{bmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{bmatrix} = \mathbf{X}\mathbf{b} = \underbrace{[\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}']}_{\text{projection matrix}} \mathbf{Y} = \mathbf{H}\mathbf{Y}. \quad (6.30)$$

The residuals are in the vector

$$\mathbf{e} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\mathbf{b} = \underbrace{[\mathbf{I}_n - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}']}_{\text{projection matrix}} \mathbf{Y}. \quad (6.31)$$

 $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is called the "hat matrix." We'll use it shortly when we talk about diagnostics. Note also that $\mathbf{e} = (\mathbf{I} - \mathbf{H})\mathbf{Y}$.

Back to Dwayne Portrait Studio data. From SAS,

$$\mathbf{b} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} -68.857 \\ 1.455 \\ 9.366 \end{bmatrix},$$

so the fitted regression line is

$$\hat{Y} = -68.857 + 1.455x_1 + 9.366x_2.$$

- Interpretation of b₁: We estimate that for 1000 person increase in persons 16 and under, mean sales increase by \$1,455 (1.455 thousand dollars) holding per capita disposable income constant.
- Interpretation of b₂: We *estimate* that for each \$1000 increase in per capita disposable income, mean sales increase by \$9,366, holding the number of people under 16 constant.

Again, in multiple regression we can decompose the total sum of squares into the SSR and SSE pieces. The table is now

Source	SS	df	MS	E(MS)
Regression	$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$	p - 1	$\frac{SSR}{p-1}$ SSE	$\sigma^2 + QF$
Error	$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y})^2$	n - p	$\frac{SSE}{n-p}$	σ^2
Total	$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$	n-1		

where p = k + 1. Here, QF stands for "quadratic form" and is given by

$$\mathsf{QF} = \frac{1}{2} \sum_{j=1}^{k} \sum_{s=1}^{k} \beta_{j} \beta_{s} \sum_{i=1}^{n} (x_{ij} - \bar{x}_{j}) (x_{is} - \bar{x}_{s}) \ge 0.$$

Note that $QF = 0 \Leftrightarrow \beta_1 = \beta_2 = \cdots = \beta_k = 0.$

In multiple regression, our F-test based on $F^* = \frac{MSR}{MSE}$ tests whether the *entire set* of predictors x_1, \ldots, x_k explains a significant amount of the variation in Y.

If $MSR \approx MSE$, there's no evidence that *any* of the predictors are useful. If MSR >> MSE, then some or all of them are useful.

Formally, the F-test tests $H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$ versus $H_a:$ at least one of these is not zero. If $F^* > F_{p-1,n-p}(1-\alpha)$, we reject H_0 and conclude that *something* is going on, there is *some* relationship between or more of the x_1, \ldots, x_k and Y. SAS provides a p-value for this test.

R^2 is how much variability soaked up by model

The coefficient of multiple deterimation is

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO} \tag{6.40}$$

measures the proportion of sample variation in Y explained by its *linear* relationship with the predictors x_1, \ldots, x_k . As before, $0 \le R^2 \le 1$.

When we add a predictor to the model R^2 can only increase.

The adjusted R^2

$$R_a^2 = 1 - \frac{SSE/(n-p)}{SSTO/(n-1)}$$
(6.42)

accounts for the number of predictors in the model. It may decrease when we add useless predictors to the model.

Dwayne Studios, ANOVA table, R^2 , & R^2_a

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	24015	12008	99.10	<.0001
Error	18	2180.92741	121.16263		
Corrected Total	20	26196			
Root MSE	11.00739	R-Square	0.9167		
Dependent Mean Coeff Var	181.90476 6.05118	Adj R-Sq	0.9075		

We reject H_0 : $\beta_1 = \beta_2 = 0$ at any reasonable significance level α . About 92% of the total variability in the data is explained by the linear regression model. The overall F-test concerns the *entire set* of predictors x_1, \ldots, x_k .

If the F-test is significant (if we reject H_0), we will want to determine *which* of the individual predictors contribute significantly to the model.

We will talk about this shortly, but the main methods are forward selection, backwards elimination, stepwise procedures, C_p , and R_a^2 .

Aside: There are also *fancy* new methods including LASSO, LARS, etc. These are used when there's *lots* of predictors, e.g. p = 500 or p = 20,000.

Recall: If **Y** is a random vector, then its *expected value* is also a vector

$$E(\mathbf{Y}) = \begin{bmatrix} E(Y_1) \\ E(Y_2) \\ \vdots \\ E(Y_n) \end{bmatrix}$$

•

The random vector **Y** also has a *covariance matrix*

$$\operatorname{cov}(\mathbf{Y}) = \begin{bmatrix} \operatorname{cov}(Y_1, Y_1) & \operatorname{cov}(Y_1, Y_2) & \cdots & \operatorname{cov}(Y_1, Y_n) \\ \operatorname{cov}(Y_2, Y_1) & \operatorname{cov}(Y_2, Y_2) & \cdots & \operatorname{cov}(Y_2, Y_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(Y_n, Y_1) & \operatorname{cov}(Y_n, Y_2) & \cdots & \operatorname{cov}(Y_n, Y_n) \end{bmatrix}$$

An aside: the multivariate normal density is given by

$$f(\mathbf{y}) = |2\pi \mathbf{\Sigma}|^{-1/2} \exp\{-0.5(\mathbf{y}-\boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\},$$

where $\mathbf{y} \in \mathbb{R}^d$. We write

$$\mathbf{Y} \sim \mathit{N_d}(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

Then $E(\mathbf{Y}) = \boldsymbol{\mu}$ and $\operatorname{cov}(\mathbf{Y}) = \boldsymbol{\Sigma}$.

For the general linear model,

$$\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n).$$

Note that along the diagonal of $cov(\mathbf{Y})$, $cov(Y_i, Y_i) = var(Y_i)$. For the general linear model,

$$E(\epsilon) = \mathbf{0} = \begin{bmatrix} 0\\0\\\vdots\\0 \end{bmatrix},$$
$$\operatorname{cov}(\epsilon) = \sigma^{2} \mathbf{I}_{n} = \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0\\0 & \sigma^{2} & \cdots & 0\\\vdots & \vdots & \ddots & \vdots\\0 & 0 & \cdots & \sigma^{2} \end{bmatrix}.$$

$$\operatorname{cov}(\mathbf{Y}) = \operatorname{cov}(\underbrace{\mathbf{X}\beta}_{\operatorname{constant}} + \underbrace{\epsilon}_{\operatorname{random}}) = \operatorname{cov}(\epsilon) = \mathbf{I}_n \sigma^2.$$

Fact: If ${\bm A}$ is a constant matrix, ${\bm a}$ is a constant vector, and ${\bm Y}$ is any random vector, then

$$E(\mathbf{AY} + \mathbf{a}) = \mathbf{A}E(\mathbf{Y}) + \mathbf{a},$$
$$cov(\mathbf{AY} + \mathbf{a}) = \mathbf{A}cov(\mathbf{Y})\mathbf{A}'.$$

For
$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$$
,
 $E(\hat{\mathbf{Y}}) = \mathbf{H}E(\mathbf{Y}) = \mathbf{H}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}\boldsymbol{\beta}$.
 $\operatorname{cov}(\hat{\mathbf{Y}}) = \mathbf{H}\operatorname{cov}(\mathbf{Y})\mathbf{H}' = \sigma^{2}\mathbf{H}$,
since $\mathbf{H}\mathbf{H}' = \mathbf{H}$ (property of a *projection matrix*).
For $\mathbf{e} = (\mathbf{I}_{n} - \mathbf{H})\mathbf{Y}$,
 $E(\mathbf{e}) = (\mathbf{I}_{n} - \mathbf{H})E(\mathbf{Y}) = (\mathbf{I}_{n} - \mathbf{H})\mathbf{X}\boldsymbol{\beta} = \mathbf{X}\boldsymbol{\beta} - \mathbf{H}\mathbf{X}\boldsymbol{\beta} = \mathbf{0}$,

as $\mathbf{HX} = \mathbf{X}$ (projection matrix again).

$$\operatorname{cov}(\mathbf{e}) = (\mathbf{I}_n - \mathbf{H})\operatorname{cov}(\mathbf{Y})(\mathbf{I}_n - \mathbf{H})' = \sigma^2(\mathbf{I}_n - \mathbf{H}).$$

(Guess why...)

Mean and variance of **b** (p. 227)

Finally,
$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$
 is unbiased

$$E(\mathbf{b}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E(\mathbf{Y}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\beta = \beta,$$

and has covariance matrix

$$\begin{aligned} \operatorname{cov}(\mathbf{b}) &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\operatorname{cov}(\mathbf{Y})[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}']' \\ &= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}']' \\ &= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}. \end{aligned}$$

Presto!

$$\mathbf{b} \sim N_p(\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}).$$

From the previous slide, the *j*th estimated coefficient β_j ,

$$\operatorname{var}(b_j) = \sigma^2 c_{jj},$$

where c_{jj} is the *j*th diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$. Estimate the standard deviation of b_j by its standard error $\operatorname{se}(b_j) = \sqrt{MSEc_{jj}}$ yielding

$$\frac{b_j - \beta_j}{se(b_j)} \sim t_{n-p} \tag{6.49}$$

Note: SAS gives each $se(b_j)$ as well as b_j , $t_j^* = b_j/se(b_j)$, and a p-value for testing each H_0 : $\beta_j = 0$.

Parameter Estimates

			Parameter	Standard				
Variable	Label	DF	Estimate	Error	t Value	Pr > t	95% Confid	lence Limits
Intercept	Intercept	1	-68.85707	60.01695	-1.15	0.2663	-194.94801	57.23387
people16	Number 16 and under (thousands)	1	1.45456	0.21178	6.87	<.0001	1.00962	1.89950
income	Per capita disposabl income (\$1000)	e 1	9.36550	4.06396	2.30	0.0333	0.82744	17.90356

We reject H_0 : $\beta_1 = 0$ at the $\alpha = 0.01$ level and $\beta_2 = 0$ at the $\alpha = 0.05$ level.

Note: A test of H_0 : $\beta_j = 0$ versus H_a : $\beta_j \neq 0$ – available in the table of regression coefficients – is a test of whether predictor x_j is necessary in a model with the other remaining predictors included. For the Studio Data:

- The SAS summary gives us $F^* = MSR/MSE = 99.10$ with associated p-value < 0.0001 (it is actually 2×10^{-10} !). We strongly reject (at any reasonable α) $H_0: \beta_1 = \beta_2 = 0$.
- 95% CI's are (1.01, 1.90) for β_1 and (0.83, 17.90) for β_2 .
- For example, we are 95% confident that mean sales increases by \$1010 to \$1900 for every 1000 increase in kids 16 and under, holding income constant.
- For H_0 : $\beta_1 = 0$ we get p < 0.0001; for H_0 : $\beta_2 = 0$ we get p = 0.03. Are people under 16, x_1 , and income, x_2 , important in the model?

Model statement model sales=people16 income / covb corrb; gives $\widehat{cov}(b)$ and $\widehat{corr}(b)$

Covariance of Estimates

Variable	Label	Intercept	people16	income
Intercept	Intercept	3602.0346743	8.7459395806	-241.4229923
people16	Number 16 and under (thousands)	8.7459395806	0.0448515096	-0.672442604
income	Per capita disposable income (\$1000)	-241.4229923	-0.672442604	16.515755794

Correlation of Estimates

Variable	Label	Intercept	people16	income
Intercept	Intercept	1.0000	0.6881	-0.9898
people16	Number 16 and under (thousands)	0.6881	1.0000	-0.7813
income	Per capita disposable income (\$1000)	-0.9898	-0.7813	1.0000

These are not typically used except for more "unusual" analyses; e.g. inference for β_1/β_2 .