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Multiple Regression Chapter 8: Polynomials & Interactions

Higher order models

* (8.1 & 8.2) Polynomials & interactions in regression. Examples:

Yi = β0 + β1xi1 + β2xi2 + εi ,

Yi = β0 + β1xi1 + β2xi2 + β12xi1xi2 + εi ,

Yi = β0 + β1xi1 + β11x2
i1 + β2xi2 + β22x2

i2 + β12xi1xi2 + εi .

* Interpretation. First-order & second-order Taylor’s approximation to
general surface Yi = g(xi1, xi2) + εi .

* Extrapolation. Centering.

* Use of higher order models to test simpler (e.g. first-order) models.

* Know how to interpret interaction models! (pp. 306–308).
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Multiple Regression Chapter 8: Polynomials & Interactions

In the model
Yi = β0 + β1xi1 + β11x2

i1 + β2xi2 + εi ,

how would you find when E (Yi ) is either the largest or smallest w.r.t. xi1?

Is this possible to do when there is an interaction? For example,

Yi = β0 + β1xi1 + β11x2
i1 + β2xi2 + β12xi1xi2 + εi .
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Multiple Regression Chapter 8: Polynomials & Interactions

* (8.3) Categorical predictors with two or more levels. Dummy
variables, baseline group. We primarily used zero-one dummy
variables.

* (8.4) Interactions between continuous and categorical predictors.
Example where xi2 = 0 or 1:

Yi = β0 + β1xi1 + β2I{xi2 = 1}+ β12xi1I{xi2 = 1}+ εi .

Interpretation! What is β12 here?

* Nice example is “soap production” pp. 330–334.
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Multiple Regression Chapter 9: Model & variable selection

Model & variable selection

* (9.1) Model building, pp. 343–349.

* Preliminaries: functional form of response & predictors and possible
interactions. Use prior knowledge.

* Reduction of predictors. Whether or not this is done depends on the
type of study: controlled experiments (no), controlled experiment
with “adjusters” (yes), confirmatory observational studies (no),
exploratory studies – i.e. “data dredging” – YES!

* Model refinement and selection: 9.3 & 9.4.

* Model validation: 9.6, chapter 10???
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Multiple Regression Chapter 9: Model & variable selection

* (9.3) Model selection:

* Maximize R2
a = 1− MSEp

SSTO/(n−1) . Penalizes for adding predictors.
Same as minimizing MSEp.

* Minimize Cp =
SSEp

MSEP
− (n − 2p). P is number of predictors including

intercept in large model that provides good estimate of σ2 & p is
number of predictors including intercept in smaller model. E (Cp) ≈ p
(or < p) have little “bias.” Also penalizes for adding too many
predictors.

* AICp & BICp (BIC also called SBC). AIC = −2 logL(β̂) + 2p.

* PRESS=
∑n

i=1(Yi − Ŷi(i))
2. Leave-one-out cross-validated measure

of model’s predictive ability.

* (9.4) Backwards elim., forward selection, stepwise variable selection.

* (9.6) Validation: we did not cover this much. Use of “validation
sample.” PRESS gets at same thing – model with smallest PRESS
has best “n-fold out of sample prediction.”
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Multiple Regression Chapter 10: diagnostics & validation

Chapter 10: Diagnostics

* Can we trust the model?

* (10.1) Added variable (partial regression) plots: regress Y on all
predictors except xj and regress xj on remaining predictors, plot
residuals versus residuals. Flat pattern ⇒ xj not needed, linear
pattern ⇒ xj needed as linear term, curved pattern ⇒ xj needed, but
transformed.

* Added variable plots assume remaining predictors are correctly
specified. Can lead to lots of model “tweaking.”

* (10.2) H = X(X′X)−1X′ is n × n “hat matrix.” hii are diagonal
leverages.

* ri = Yi−Ŷi√
MSE(1−hii )

is (internally) studentized residual.

* ti
Yi−Ŷi√

MSE(i)(1−hii )
is (externally) studentized deleted residuals. Has

tn−p−1 distribution if model is true: Bonferroni check for observations
outlying with respect to the model.
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Multiple Regression Chapter 10: diagnostics & validation

* ri or ti versus predictors x1, . . . , xk and/or versus fitted Ŷi confirm or
invalidate modeling assumptions...also get at “adequacy.” Checking
for linearity & constant variance. Residuals should be approximately
normal if normality holds and model is correct. Non-normality affects
hypothesis tests in small samples.

* (10.3) hii are leverage points: potentially influential values of xi . Rule
of thumb hii >

2p
n outlying with respect to the rest of the predictor

vectors. h = xh(X′X)−1xh used to check for hidden extrapolation
with high dimensional predictors.

* (10.4) DFFITi =
Ŷi−Ŷi(i)√
MSE(i)hii

is number of standard deviations fitted Ŷi

changes when leaving out (xi ,Yi ). DFFITi > 1 or 2
√

p/n indicates
influential observation.
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Multiple Regression Chapter 10: diagnostics & validation

* Cook’s distance Di =
∑n

j=1(Ŷj−Ŷj(i))
2

p MSE =
r2i hii

(1−hii )p . When is Di large?
Aggregate measure of how fitted surface changes when leaving out i .
Look for values substantially larger than other values.

* What do large values of ri indicate? Large values of Di? Large values
of both?

* (10.5) VIFj = 1/(1− R2
j ) where R2

j is R2 regressing xj onto the rest
of the predictors. Check for VIFj > 10. VIF’s are for predictors not
observations.
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Multiple Regression Chapter 11: Remedial measures

Chapter 11: Other types of regression

* (11.1) Weighted least squares: fix for non-constant variance that does
not involve transforming the response.

* Recipe on page 425 to estimate weights wi .

* bw = (X′WX)−1X′WY.

* (11.2) Ridge regression: fix for multicollinearity.

* Adds bias, reduces variance by adding a biasing constant c to OLS
estimate br = ((X∗)′X∗ + cI)−1(X∗)′Y∗. Pick c from “ridge trace” of
standardized regression coefficients.

* Increasing c reduces variance of estimator but biases coefficients
toward zero.

* LASSO is same idea, but regression parameter estimates can be zero:
useful for multicollinearity and variable selection.
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Multiple Regression Chapter 11: Remedial measures

* (11.3) Least absolute deviations (LAD) or L1 regression minimizes (p.
438)

Q(β) =
n∑

i=1

|Yi − x′iβ|.

* Dampens effect of outliers (w.r.t. the model). Also useful for
non-normal errors.

* Fit in PROC QUANTREG.

* IRLS (iteratively reweighted least squares) regression. Special case is
Huber regression which is between OLS and LAD. Fit in PROC
ROBUSTREG.

T. Hanson (USC) Stat 704: Data Analysis I, Fall 2014 11 / 13



Multiple Regression Chapter 11: Remedial measures

Additive model

* Fit in proc gam or proc transreg (also gam package in R). Will
come back to this in STAT 705. Most general version:

h(Yi ) = β0 + β1xi1 + g̃1(xi1) + · · ·+ βkxik + g̃k(xik) + ε.

* The functions h(·), g̃1(·), . . . , g̃k(·) fit via splines.

* Obviates the use of “added variable” plots. All k transformations
estimated simultaneously.

* proc gam provides tests of H0 : g̃j(xj) = 0 all xj but does not
estimate h(·).

* proc transreg provides estimates of gj(xj) = βjxj + g̃j(x) as well as
h(·), but does not test H0 : g̃j(xj) = 0 all xj (that I know of).

* Can be used to quickly find suitable transformations of predictors in
normal-errors regression.

* Possible to include interactions & interaction surfaces in proc gam.
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Multiple Regression Chapter 11: Remedial measures

Exam II

* Will take place in LC 205, a few doors down, Thursday, 12/4 at the
usual time. This is a STAT 205 lab.

* Exam II will be one data analysis project and a few short answer.
Hopefully shorter than midterm.

* Closed book, closed notes, you can use SAS & R documentation, not
internet.

* You will need to build and validate a good, predictive regression
model for a given data set. Be complete as you can. Look at the
applied parts of old qualifying exams to get an idea.

* Either use PC’s in lab (you need a login), or else bring your own
laptop. You will need to print out your exam in the lab (preferred), or
else email it to me and I’ll print it out (not preferred).

* Questions?
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