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Chapter 13 Parametric nonlinear regression

Throughout most of STAT 704 and 705, we concentrated on linear
models where E (Yi ) = x′iβ. Notable exceptions arose when we
considered non-normal data. For logistic regression we had
E (Yi ) = ex

′
iβ/[1 + ex

′
iβ]; Poisson regression gave us

E (Yi ) = tie
x′iβ.

Sometimes scientists have a parametric non-linear mean function in
mind for normal data. Theoretical considerations may lead to such
a model, or else empirical evidence collected over time. Examples:
dose-response models, growth curves, heating in swine due to MRI.
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Parametric nonlinear regression

A parametric nonlinear model (13.1–13.5) has a prespecified
parametric form indexed by parameters γ

Yi = f (xi ,γ) + εi .

For example the exponential growth/decay model is
Yi = γ0e

γ1xi + εi . Data reduction takes place through the
estimation of γ = (γ0, γ1) and σ.

Another example is the logistic growth curve
Yi = γ0[1 + γ1 exp(γ2xi )]−1 + εi .

Note that model diagnostics are similar to the linear case, for
example ri = Yi − f (xi , γ̂) can be used to assess model adequacy.
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Fitting parametric nonlinear models

Fitting of such models is carried out via maximum likelihood using
Newton-Raphson. Several functions in SAS can carry this out, but
PROC NLMIXED is the most versatile. Good starting values can
make or break the program; need to think about what the
parameters mean in the model.

There is a bit on fitting at the end of the logistic regression notes.
In your book see pp. 517–521. This theory is covered in more
detail in STAT 823 (large sample theory) and STAT 740 (advanced
statistical computing).

PROC NLMIXED provides the MLE’s as well as standard errors.
Also, functions of parameters can be estimated as well.
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Example (pp. 514–515) with SAS code

A hospital administrator wants to predict the degree of long-term
recovery after discharge for severely injured patients; xi is number
of days hospitalized and Yi is a prognostic index for long-term
recovery (larger is better prognosis). Earlier studies suggest an
exponential relationship Yi = γ0e

γ1xi + εi .

data hosp;

input index days @@;

datalines;

54 2 50 5 45 7 37 10 35 14 25 19 20 26 16 31

18 34 13 38 8 45 11 52 8 53 4 60 6 65

;

proc sgscatter; plot index*days;

* starting values picked by looking at plot;

proc nlmixed data=hosp;

parms g0=60 g1=-0.1 sigma=2;

mu=g0*exp(g1*days);

model index ~ normal(mu,sigma*sigma);

predict g0*exp(g1*days) out=fit; * try predict (index-mu)/sigma out=res;

proc sgplot data=fit;

scatter x=days y=index;

series x=days y=pred;
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Mixed effects nonlinear models

Note that hierarchical versions of these models can also be fit to
repeated measures data. For example, if we have m hospitals
instead of just one, there can be a separate curve for each hospital.
Say i = 1, . . . ,m denotes the hospital and j = 1, . . . , ni denotes
the patient within hospital i . A hierarchical model is

Yij = γi0 exp(γi1xij) + εij ,

where

γ i =

[
γi0
γi1

]
iid∼ N2

([
γ0
γ1

]
,

[
σ11 σ12
σ12 σ22

])
.

This model can also be fit in PROC NLMIXED.
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Learning example pp. 533–537

Electronics company is making something new at two locations, A
is coded 1 and B is coded 0. Location B has more modern facilities
and is expected to be more efficient than A after an initial learning
period. The efficiency is measured by Yi ; xi1 is location and xi2 is
the number of weeks that have gone by manufacturing this part. A
model that allows for initial learning followed by a horizontal
asymptote is

Yi = γ0 + γ1xi1 + γ3 exp(γ2xi2) + εi .

This is two exponential regressions with an intercept γ0, the same
efficiency growth rate γ2, and a shifted vertical difference due to
locations γ1.
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Crude starting values for Newton-Raphson maximization

To come up with crude starting values note that when γ2 and γ3
are less than zero, γ0 is upper asymptote for location B and
γ0 + γ1 is upper asymptote for location A.

Based on an initial scatterplot set γ0 = 1, γ1 = −0.05, and
σ = 0.02. The exponential is “used up” by 30 weeks, maybe try
γ2 = −0.1.

γ3 is hard to think about, maybe just try γ3 = −1?
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Learning example in SAS

data learn;

input location week efficiency @@;

datalines;

1 1 .483 1 2 .539 1 3 .618 1 5 .707 1 7 .762 1 10 .815

1 15 .881 1 20 .919 1 30 .964 1 40 .959 1 50 .968 1 60 .971

1 70 .960 1 80 .967 1 90 .975 0 1 .517 0 2 .598 0 3 .635

0 5 .750 0 7 .811 0 10 .848 0 15 .943 0 20 .971 0 30 1.012

0 40 1.015 0 50 1.007 0 60 1.022 0 70 1.028 0 80 1.017 0 90 1.023

;

proc sgscatter data=learn; plot efficiency*week / group=location;

proc nlmixed data=learn;

parms g0=1 g1=-0.05 sigma=0.02 g2=-0.1 g3=-1;

mu=g0+g1*location+g3*exp(g2*week);

model efficiency ~ normal(mu,sigma*sigma);

predict g0+g1*location+g3*exp(g2*week) out=fit;

proc sgplot data=fit;

scatter x=week y=efficiency / group=location;

series x=week y=pred / group=location;
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Problem from 2010 MS/PhD qualifying exam

The May 2010 qualifying exam (part II) has a nice problem.

data snake;

input conc rate @@;

datalines;

31.25 53.01 62.5 81.42 125 122.11 250 304.57 500 376.87

1000 414.13 2000 553.46

;

proc sgscatter; plot rate*conc;

proc nlmixed data=snake;

parms b1= b2= b3= sigma=; * let’s find these in class;

mu=b1/(1+(b2/conc)**b3);

model rate ~ normal(mu,sigma*sigma);

predict b1/(1+(b2/conc)**b3) out=fit;

estimate "mean rate at conc=750" b1/(1+(b2/750)**b3);

proc sgplot data=fit;

scatter x=conc y=rate;

series x=conc y=pred;
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Nonparametric regression

Consider a continuous response with three predictors (although
these methods can be extended to other types of response).

An additive model stipulates

Yi = µ+ f1(xi1) + f2(xi2) + f3(xi3) + εi ,

and seeks to estimate the functions f1(x), f2(x), and f3(x)
(typically via splines). These are fit in proc gam and proc

transreg. Can also consider transformation of Yi as well as
pairwise interaction surfaces.
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Nonparametric regression

A parametric nonlinear model (Chapter 13) has a prespecified
parametric form indexed by parameters γ

Yi = f (xi ,γ) + εi .

For example the exponential growth/decay model is
Yi = γ0e

γ1xi + εi . Data reduction takes place through the
estimation of γ and σ.

Nonparametric regression is essentially unspecified

Yi = f (xi ) + εi ,

and seeks to estimate f (x) : Rk → R directly. Two useful and
popular methods are lowess and kernel smoothing.
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Kernel smoothing

Let’s start with a univariate predictor yielding data {(xi ,Yi )}ni=1.
At each x ∈ R, the kernel-smoothed estimate of f (·) is a weighted
average of the Yi ’s:

f̂h(x) =
n∑

i=1

[
k{(xi − x)/h}/h∑n
j=1 k{(xj − x)/h}/h

]
Yi .

Here, k(d) is the kernel. Common choices are Gaussian
k(d) = e−0.5d

2
(most common), uniform k(d) = I{|d | < 1}, and

Epanechnikov k(d) = 0.75(1− d2)I{|d | < 1} (there are many
more). Different kernel functions simply weight neighboring points
differently.
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Bandwidth

The parameter h is called the bandwidth. The larger the
bandwidth, the smoother the estimate f̂h. What happens to f̂h as
h→∞? Is it possible to have f̂h(x) outside the range of
Yi -values?

A common way to choose the bandwidth is through
cross-validation, ĥ = argminh>0

∑n
i=1(Yi − f̂h,i (xi ))2 where f̂h,i is

the kernel-smoothed estimate based on the (n − 1) pairs
{(xj ,Yj)}j 6=i .

ksmooth in R gives kernel-smoothed regression estimates without
standard errors. A great package that does a lot more (including
handling categorical predictors) is np. You need to install it from
CRAN.
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Long-term recovery example in R with Gaussian
kernel-smoothing

Recall that Yi is prognostic index and xi is days hospitalized. The
default bandwidth h selection is cross-validation. The default
kernel is Gaussian.

library(np)

index=c(54,50,45,37,35,25,20,16,18,13,8,11,8,4,6)

days=c(2,5,7,10,14,19,26,31,34,38,45,52,53,60,65)

fit1=npreg(index~days)

plot(fit1,plot.errors.method="asymptotic",plot.errors.style="band",main="Kernel-smoothed")

points(days,index)
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11.4 LOcally WEighted Scatterplot Smoothing (lowess)

Kernel-smoothing is biased at the boundaries min{xi} and
max{xi}, and at the extrema of f (·). A method that solves some
of these issues uses locally fitted polynomials to estimate f (x) at
each x via weighted least squares (WLS). Lowess was introduced
by Cleveland (1979).

Recall that weighted least squares weights some pairs (xi ,Yi ) more
heavily when “more information” is known about Yi , e.g. var(Yi )
is smaller than for other values. The weight wi attached to (xi ,Yi )
is the ith diagonal of the matrix W; the remaining elements are
zero. The weighted least squares estimate of β is given by
β̂ = (XWX′)−1X′WY.
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lowess

Consider estimating f (x) at x with a linear or quadratic function.
If we assume that pairs (xi ,Yi ) have more information for f (x) at
values of xi near x , we can weight them more using WLS. The
most common weight function is tricube

wi (x) =

{
[1− (|x − xi |/dq(x))3]3 |x − xi | < dq(x)

0 |x − xi | > dq(x)

}
.

dq(x) is a distance such that the proportion of xi values within x is
q, i.e. dq(x) = min{d > 0 : 1

n

∑n
i=1 I{|xi − x | < d} ≥ q}. A

common choice of q is 0.5 (p. 450).

The lowess estimate of f (x), assuming local linear fitting, is then
f̂ (x) = [ 1 x ](XW(x)X′)−1X′W(x)Y where
W(x) = diag(w1(x), . . . ,wn(x)) and the ith row of bX is
[ 1 xi ]. For each value of x , a separate WLS is fitted – lowess
requires a lot of computation!
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Long-term recovery example in R with lowess

Uses defaults. An older function is lowess; loess has
improvements on lowess but gives essentially the same answers.

index=c(54,50,45,37,35,25,20,16,18,13,8,11,8,4,6)

days=c(2,5,7,10,14,19,26,31,34,38,45,52,53,60,65)

fit2=loess(index~days)

pred.days=seq(2,65,1)

pred2=predict(fit2,pred.days,se=TRUE)

plot(pred.days,pred2$fit,type="l",xlab="Days",ylab="Index",main="Lowess Fit")

lines(pred.days,pred2$fit-1.96*pred2$se.fit,lty=3)

lines(pred.days,pred2$fit+1.96*pred2$se.fit,lty=3)

points(days,index)
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Similarities between lowess and kernel-smoothing

Both kernel-smoothing and lowess have weight functions and
bandwidths that determine how points in a neighborhood of x are
weighted.

Both estimates are written as f̂ (x) = c(x)′Y, i.e. are linear
combinations of the Yi ’s, that depend on x . In STAT 704
regression, f̂ (x) = c(x)′Y where c(x)′ = [ 1 x ](X′X)−1X′. Note
that kernel-smoothing provides a true average of the Yi ’s at each
point, whereas lowess values of ci (x) may be negative or greater
than one.

Both methods are generalized to more than one predictor similarly.
Predictors are standardized to have variance one and Euclidean
distance d = ||x− x∗|| is used in the weight function rather than
|x − x∗|, or else the Mahalanobis distance used
d =

√
(x− x∗)′S−1(x− x∗) (no need to standardized first). Note

that categorical predictors need some thought.
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Questions and comments

Is extrapolation a good idea with lowess or kernel-smoothed
methods?

The asymptotics for nonparametric smoothing methods is
worth an entire course. A bit is covered it STAT 824
(nonparametrics).

Which method, lowess or kernel-smoothing, is more
appropriate for Bernoulli data? Why?

There’s some nice animation here:
http://www.r-bloggers.com/some-heuristics-about-local-
regression-and-kernel-smoothing/

A method worthy of its own lecture is basis expansions. Basis
expansions write the unknown f (·) as f (x) =

∑K
k=1 βkφk(x)

for a set of known functions φk(·). The unknown parameters
are β1, . . . , βK . This yields a linear model.

Example basis expansions include polynomials, Legendre
polynomials, wavelets, sines and cosines, and B-splines.
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