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What is ANOVA?

Analysis of variance (ANOVA) models are regression models with
qualitative predictors, called factors or treatments.

Factors have different levels.

For example, the factor “education” may have the levels high
school, undergraduate, graduate. The factor “gender” has two
levels female, male.

We may have several factors as predictors, e.g. race and gender
may be used to predict annual salary in $.

There are two types of factors:

Classification (investigator cannot control).

Experimental (investigator can control).
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ANOVA

A control treatment (or control factor level) is sometimes used to
measure effects of (new or experimental) treatments under
investigation, relative to the “status quo.”

e.g. ibuprofin, aspirin, and placebo. We have 3 factor levels.
Without placebo, we do not know how iboprofin or aspirin does
relative to no pain killer, only relative to each other.

Uses of ANOVA models: find best/worst treatment, measure
effectiveness of new treatment, compare treatments.

Often interested in determining whether there is a difference in
treatments.

Read Sections 16.1–16.8 in the text.
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16.3 Cell means model

Have r different treatments or factor levels. At each level i , have
ni observations from group i .

Total number of observations is nT = n1 + n2 + · · ·+ nr .

Response is Yij where

{
i = 1, . . . , r factor level

j = 1, . . . , ni obs. within factor level

}
.

Example: Two factors: MS, PhD. Yij is age in years. Spring of
2014 we observe

Y11 = 28, Y12 = 24, Y13 = 24, Y14 = 22, Y15 = 26, Y16 = 23,

Y21 = 29, Y22 = 23, Y23 = 26, Y24 = 25, Y25 = 22, Y26 = 23, Y27 = 38, Y28 = 33, Y29 = 30, Y2,10 = 27.
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One-way ANOVA model

Yij = µi + εij , εij
iid∼ N(0, σ2).

Can rewrite as
Yij

ind .∼ N(µi , σ
2).

Data are normal, data are independent, variance constant
across groups.

µi is allowed to be different for each group. µ1, . . . , µr are the
r population means of the response. A picture helps.

Questions: what is E{Yij}? What is σ2{Yij}?
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Matrix formulation

(pp. 683–684, 710–712) For r = 3 we have

Y11

Y12
...

Y1n1

Y21

Y22
...

Y2n2

Y31

Y32
...

Y3n3



=



1 0 0
1 0 0
...

...
...

1 0 0
0 1 0
0 1 0
...

...
...

0 1 0
0 0 1
0 0 1
...

...
...

0 0 1



 µ1

µ2

µ3

+



ε11

ε12
...
ε1n1

ε21

ε22
...
ε2n2

ε31

ε32
...
ε3n3


or

Y = Xβ + ε.
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16.4 Fitting the model

For r = 3, let Q(µ1, µ2, µ3) =
∑3

i=1

∑ni
j=1(Yij − µi )2.

Need to minumize this over all possible (µ1, µ2, µ3) to find
least-squares (LS) solution. Can easily show that Q(µ1, µ2, µ3) has
minimum at

β̂ =

 µ̂1

µ̂2

µ̂3

 =

 Ȳ1•
Ȳ2•
Ȳ3•


where Ȳi• = 1

ni

∑ni
j=1 Yij is the sample mean from the ith group

(pp. 687–688).

These β̂ are also maximum likelihood estimates.

7 / 21



Matrix formula of least-squares estimators (r = 3)

X′X =

 1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0 1 · · · 1





1 0 0

.

.

.

.

.

.

.

.

.
1 0 0
0 1 0

.

.

.

.

.

.

.

.

.
0 1 0
0 0 1

.

.

.

.

.

.

.

.

.
0 0 1



=

 n1 0 0
0 n2 0
0 0 n3

 ,

(X′X)−1 =

 n−1
1 0 0

0 n−1
2 0

0 0 n−1
3

 , X′Y =

 Y1•
Y2•
Y3•

 ,

⇒ β̂ = (X′X)−1X′Y =

 Ȳ1•
Ȳ2•
Ȳ3•

 .
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Residuals

As in regression (STAT 704),

eij = Yij − Ŷij = Yij − µ̂i = Yij − Ȳi•.

As usual, Ŷij is the estimated mean response under the model.

Note that
∑ni

j=1 eij = 0. [check this!]

In matrix terms
e = Y − Xβ̂ = Y − Ŷ.
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Kenton Food Company Example

r = 4 box designs for a new breakfast cereal.

20 stores w/ roughly equal sales volumes picked to
participate; ni = 5 is planned for each.

A fire occurred at one store that had design 3, so ended up
with nT = 19 instead of 20, and n1 = n2 = n4 = 5 and
n3 = 4.
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Kenton foods example

data kenton;

input sales design @@;

datalines;

11 1 17 1 16 1 14 1 15 1 12 2 10 2 15 2 19 2 11 2

23 3 20 3 18 3 17 3 27 4 33 4 22 4 26 4 28 4

;

proc sgscatter;

plot sales*design;

run;

proc glm plots=all; * zero/one dummy variables, but recover cell means via lsmeans;

class design;

model sales=design;

lsmeans design;

run;
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16.5 ANOVA table (pp. 690–698)

Define the following

Yi• =

ni∑
j=1

Yij = i group sum,

Ȳi• =
1

ni

ni∑
j=1

Yij = ith group mean

Y•• =
r∑

i=1

ni∑
j=1

Yij =
r∑

i=1

Yi• = sum all obs.

Ȳ•• =
1

nT

r∑
i=1

ni∑
j=1

Yij =
1

nT

r∑
i=1

Yi• = mean all obs.
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Sums of squares for treatments, error, and total

SSTO =
r∑

i=1

ni∑
j=1

(Yij − Ȳ••)
2 = variability in Yij ’s

SSTR =
r∑

i=1

ni∑
j=1

(Ŷij − Ȳ••)
2 =

r∑
i=1

ni∑
j=1

(µ̂ij − Ȳ••)
2

=
r∑

i=1

ni∑
j=1

(Ȳi• − Ȳ••)
2 =

r∑
i=1

ni (Ȳi• − Ȳ••)
2

= variability explained by ANOVA model

SSE =
r∑

i=1

ni∑
j=1

(Yij − Ŷij)
2 =

r∑
i=1

ni∑
j=1

e2
i

= variability NOT explained by ANOVA model
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Comments

As before in regression,

SSTO︸ ︷︷ ︸
total

= SSTR︸ ︷︷ ︸
treatment effects

+ SSE︸︷︷︸
leftover randomness

SSE=0 ⇒ Yij = Yik for all j 6= k

SSTR=0 ⇒ Ȳi• = Ȳ•• for i = 1, . . . , r .
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ANOVA table (p. 694)

Source SS df MS

SSTR
∑r

i=1

∑ni
j=1(Ȳi• − Ȳ••)

2 r − 1 SSTR/(r − 1)

SSE
∑r

i=1

∑ni
j=1(Yij − Ȳi•)

2 nT − r SSE/(nT − r)

SSTO
∑r

i=1

∑ni
j=1(Yij − Ȳ••)

2 nT − 1
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Degrees of freedom

SSTO has nT − 1 df because there are nT Yij − Ȳ•• terms in
the sum, but they add up to zero (1 constraint).

SSE has nT − r df because there are nT Yij − Ȳi• terms in the
sum, but there are r constraints of the form∑ni

j=1(Yij − Ȳi•) = 0.

SSTR has r − 1 df because there are r terms ni (Ȳi• − Ȳ••) in
the sum, but they sum to zero (1 constraint).
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Estimated mean squares

E{MSE} = σ2, MSE is unbiased estimate of σ2

E{MSTR} = σ2 +

∑r
i=1 ni (µi − µ•)2

r − 1
,

where µ• =
∑r

i=1
niµi
nT

is weighted average of µ1, . . . , µr (pp.
696–698).

If µi = µj for all i , j ∈ {1, . . . , r} then E{MSTR} = σ2, otherwise
E{MSTR} > σ2.

Hence, if any group means are different then E{MSTR}
E{MSE} > 1.
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16.6 F test of H0 : µ1 = · · · = µr

Fact: If µ1 = · · · = µr then

F ∗ =
MSTR

MSE
∼ F (r − 1, nT − r).

To perform α-level test of H0 : µ1 = · · · = µr vs. Ha : some
µi 6= µj for i 6= j ,

Accept if F ∗ ≤ F (1− α, r − 1, nT − r) or p-value ≥ α.

Reject if F ∗ > F (1− α, r − 1, nT − r) or p-value < α.

p-value = P{F (r − 1, nT − 1) ≥ F ∗}.

Example: Kenton Foods
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Comments

If r = 2 then F ∗ = (t∗)2 where t∗ is t-statistic from 2-sample
pooled-variance t-test.

The F-test may be obtained from the general nested linear
hypotheses approach (big model / little model). Here the full
model is Yij = µi + εij and the reduced is Yij = µ+ εij .

F ∗ =

[
SSE(R)−SSE(F )

dfER−dfEF

]
SSE(F )
dfEF

=
MSTR

MSE
.
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16.7 Alternative formulations

SAS will fit the cell means model (discussed so far) with a noint

option in model statement; however, the F-test will not be correct.
Your textbook discusses an alternative parameterization that is not
easy to get out of the SAS procedures we will use.

By default, SAS fits the model

Yij = µ+ αi + εij ,

where αr = 0.

E{Yrj} = µ; µ is the cell-mean for the rth level.

For i < r , E{Yij} = µ+ αi ; αi is i ’s offset to group r ’s mean
µ.

Note that SAS’s default corresponds to a regression model where
categorical predictors are modeled using the usual zero-one dummy
variables. In class, let’s find the design X for SAS’s model for
r = 3 and n1 = n2 = n3 = 2.
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SAS’s baseline & offset model

Even though SAS parameterizes the model differently, with the rth
level as baseline, the ANOVA table and F-test is the same as the
cell means model.

Also µ̂ = Ȳr• and α̂i = Ȳi• − Ȳr• are the OLS and MLE
estimators. These are reported in SAS. Use, e.g. model

sales=design / solution;

The cell means µ̂i are obtained in SAS by adding lsmeans to glm

or glimmix.
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